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Abstract We study the inefficiency of equilibrium outcomes in Bottleneck Conges-
tion games. These games model situations in which strategic players compete for a
limited number of facilities. Each player allocates his weight to a (feasible) subset of
the facilities with the goal to minimize the maximum (weight-dependent) latency that
he experiences on any of these facilities. We analyze the (strong) Price of Anarchy of
these games for a natural load balancing social cost objective, i.e., minimize the max-
imum latency of a facility. In our studies, we focus on Bottleneck Congestion games
with linear latency functions. These games still constitute a rich class of games and
generalize, for example, Load Balancing games with identical or uniformly related
machines (with or without restricted assignments). We derive upper and (asymptoti-
cally) matching lower bounds on the (strong) Price of Anarchy of these games. We
also derive more refined bounds for several special cases of these games, including
the cases of identical player weights, identical latency functions and symmetric
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strategy sets. Further, we provide lower bounds on the Price of Anarchy for k-strong
equilibria.

Keywords Algorithmic game theory · Congestion games · Inefficiency of
equilibria · Price of anarchy · Strong equilibria

1 Introduction

Load Balancing games constitute an important class of strategic games that capture
many applications of practical relevance. These games model situations in which a
set of strategically acting players (or jobs) compete for a limited number of resources
(or machines). Every player chooses one of the resources available to him and assigns
his weight (or load) to this resource. The latency of a resource depends on the total
weight of the players using it. The goal of each player is to select a resource such that
the latency that he experiences on this resource is minimized.

The study of Load Balancing games is motivated by the need for quantifying
the inefficiency caused by the selfish behavior of a set of autonomous players that
utilize distributed processors upon which a system is built. The social cost objec-
tive of an assignment of loads to processors is measured by the makespan, i.e., the
completion time of the most loaded machine, which reflects the distance from equi-
distribution (balancing) of the load to the machines. Load Balancing games have
recently been studied extensively for a variety of different machine environments,
including identical [20], uniformly related [11, 15, 19, 20], restricted assignment [5,
15], and unrelated machines [2].

A natural generalization of Load Balancing games are Bottleneck Congestion
games (BCGs) [6, 17]. Here, every player chooses a subset of the resources (also
referred to as facilities in this context) from a set of feasible facility allocations and
assigns his weight to each of these facilities. The goal of each player is to select
a subset of the facilities such that the maximum latency that he experiences over
the chosen facilities is minimized. Load Balancing games constitute a special case
of BCGs in that the strategy space of each player contains only singleton subsets
of facilities (machines), i.e., the strategy of each player is always a single facility.
Another interesting special case of BCGs are Bottleneck Network Routing games [6].
In these games, the facilities are identified with the links of an underlying network
and the players’ strategies correspond to paths in the network. Despite their impor-
tance, BCGs have received relatively little attention in the literature and are far from
being well-understood. In this paper we study the inefficiency of stable outcomes in
these games.

Bottleneck Congestion games essentially generalize the context of Load Balancing
games by modeling the activity of each selfish player upon complexes of interrelated
resources. This generalization brings the model closer to reality because in most large
scale computing systems, the workload of a player occupies different components of
the system simultaneously. For example, instantiations of such games emerge if the
components form paths in networks, or if they correspond to interconnected parallel
processors, etc. It is natural to assume that each player wants to balance his load
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across the different components available to him and, hence, attempts to minimize
the maximum latency of a facility that he uses.

One of the most prominent solution concepts for the prediction of outcomes of
rational behavior in strategic games is the Nash equilibrium concept. It describes out-
comes that are resilient to unilateral player deviations. Throughout this paper we will
focus exclusively on pure strategy deviations. A more general solution concept is
the strong equilibrium concept introduced by Aumann [3]. It describes outcomes of
strategic games that are stable with respect to coordinated pure deviations of player
subsets (also referred to as coalitions). More precisely, an outcome of a strategic
game is a strong equilibrium if no coalition of the players can deviate such that
every member of the coalition strictly benefits. An outcome is said to be a k-strong
equilibrium if this property holds for all coalitions of size at most k. Strong equi-
libria thus generalize the pure Nash equilibrium concept (k = 1). Harks, Klimm
and Möhring [17] showed that (under quite loose assumptions) BCGs always admit
strong equilibria.

It is well known that equilibrium outcomes might be inefficient in the sense that
they are suboptimal with respect to some socially desirable objective function. A
natural social cost objective function that has been studied intensively in the context
of Load Balancing games is to minimize the maximum latency of a facility. We will
use it also here for our investigations of the inefficiency of equilibria for BCGs.

The Price of Anarchy (PoA) [20, 21, 23] has become the standard measure to assess
the inefficiency of equilibrium outcomes. It is defined as the worst-case ratio (over
all instances) of the maximum cost of a Nash equilibrium outcome and the cost of a
socially optimal outcome. The strong Price of Anarchy (SPoA) and the k-strong Price
of Anarchy (k-SPoA) [2] refer to the natural adaptations of this measure to strong and
k-strong equilibrium outcomes, respectively.

1.1 Our Contributions

We study the inefficiency of both pure Nash equilibria and strong equilibria of BCGs.
In our studies, we focus on BCGs with linear latency functions, where the latency of
each facility is a linear function of the total weight assigned to it. These games still
constitute a rich class of games and generalize, for example, Load Balancing games
with identical or uniformly related machines (with or without restricted assignments).
We provide upper and lower bounds on the (strong) Price of Anarchy for symmetric
and asymmetric linear BCGs (definitions will be given below). An overview of the
main results obtained in this paper is given in Table 1. Here, n and m refer to the
number of players and facilities, respectively.

Our main contributions are as follows:

1. We show that both the PoA and the SPoA of linear BCGs is Θ(m). More pre-
cisely, we show that m ≤ PoA ≤ 2m− 1 and m− 1 ≤ SPoA ≤ m. These results
hold for linear BCGs in general.

For comparison, Gairing et al. [15] proved that m − 1 ≤ PoA ≤ m for the
case of Load Balancing games with uniformly related machines and restricted
assignments (which is a special case of the linear BCGs considered here).
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Table 1 Summary of the bounds obtained for the SPoA and the k − SPoA of linear BCGs

id. linear latency arb. linear latency (SPoA)

BCG k − SPoA (lower) SPoA id. players arb. players

sym. max{2, �m/(2k)�} 2 2 O(m)

asym. max

{⌊
− 1

2 +
√

2m + 1
4

⌋
,
⌊

m
k−1

⌋
− 1

}
Θ

(√
m

)
O

(√
n
)

Θ(m)

The PoA of linear BCGs is at most 2m− 1 and there is an asymptotically matching lower bound showing
SPoA ≥ m − 1

Further, Banner and Orda in [6] showed that PoA = Θ(m) for network BCGs
with identical latency functions of the form xp (where p is a constant).

2. We also derive bounds for linear BCGs with identical players, i.e., when all
players have the same weight. In general, for asymmetric BCGs, we establish an
upper bound of SPoA = O

(√
n
)
. For symmetric BCGs, i.e., when all players

have the same strategy space, we derive an (exact) bound of SPoA = 2.
Previously, Gairing et al. [15] proved an upper bound PoA =

O(log n/ log log n) for Load Balancing games with uniformly related machines
and restricted assignments (which is a special case of asymmetric linear BCGs).

3. We also consider linear BCGs with identical facilities, i.e., when the latency
functions of all facilities are the same. For asymmetric BCGs, we show that
SPoA = Θ

(√
m

)
. Further, for symmetric BCGs, we show that SPoA = 2.

In fact, the lower bound of 2 on the SPoA for symmetric BCGs with identical
players mentioned above also holds for identical facilities. We also give elaborate
lower bounds on the k-SPoA for symmetric and asymmetric BCGs (see Table 1
for details).

We note that Load Balancing games with identical machines constitute a spe-
cial case of symmetric linear BCGs with identical facilities. For these games,
Andelman, Feldman and Mansour [2] showed a lower bound of 2m/(m + 1) on
the SPoA, which approaches 2 as the number m of machines (which correspond
to the facilities) goes to infinity. Our bound is exact and we show that the worst-
case occurs even for a constant number of facilities and players. In [2] an exact
bound of 2 was shown for the SPoA of Load Balancing games with unrelated
machines; in this setting, the weights of the players may vary, depending on the
machine they choose. Thus, the lower bound of 2 in this case is incomparable to
our lower bound.

4. Finally, we also provide asymptotically tight worst-case examples for (directed)
network linear BCGs (definitions will be given below).

1.2 Related Work

One of the earliest works concerning Network BCGs is by Caragiannis et al. [9]. The
authors devised polynomial time algorithms for computing pure Nash equilibria, on
single sink and/or single source networks, with linear latency functions. They also
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provided bounds on the PoA of equilibria for such networks. Network BCGs were
also considered by Banner and Orda [6]. The authors showed existence of pure Nash
equilibria and provided an Θ(m) bound on the PoA for identical network links with
latency functions of the form xp, where p is some constant. Busch and Magdon-
Ismail [8] studied the PoA of network BCGs with identical players. Harks et al. [17]
introduced general BCGs and showed that strong equilibria are guaranteed to exist
in these games. In [16], the problem of computing pure Nash equilibria and strong
equilibria is addressed. The paper shows several hardness results and proposes poly-
nomial time algorithms for special cases. In a very recent work, Busch and Kannan
[7] study the PoA of BCGs under the assumption that the players have strategy spaces
with bounded stretch; here the stretch constitutes a measure of variation in resource
utilization.

As mentioned above, BCGs generalize Load Balancing games, which have been
studied intensively in recent years. Load Balancing games were first studied by
Koutsoupias and Papadimitriou in their seminal work [20], where they introduce
the Price of Anarchy notion. Among other results, they prove for Load Balac-
ing games with m identical machines a lower bound of Ω(log m/ log log m) on
the PoA for mixed Nash equilibria. Czumaj and Vöcking [11] and Koutsoupias,
Mavronicolas and Spirakis [19] proved a matching upper bound. For Load Balanc-
ing games with uniformly related machines, Czumaj and Vöcking [11] show that
PoA = Θ(log m/ log log log m) for mixed Nash equilibria.

Concerning the PoA of pure Nash equilibria, an upper bound of 2m
m+1 for m identi-

cal machines follows from an early approximation analysis of a local search heuristic
for scheduling by Finn and Horowitz [14]. Schuurman and Vredeveld [25] gave a
matching lower bound example. Czumaj and Vöcking [11] proved that the pure PoA
for Load Balancing games on uniformly related machines is Θ(log m/ log log m).
Awerbuch et al. [5] showed that the pure PoA of Load Balancing games with m iden-
tical machines and restricted assignments is also Θ(log m/ log log m). Independently,
Gairing et al. [15] obtained the same bounds. Further, the authors prove that for m

uniformly related machines with restricted assignments, m − 1 ≤ PoA ≤ m. For a
detailed coverage of these results we refer the reader to [26].

Andelman, Feldman and Mansour [2] were the first to study strong equilibria and
k-strong equilibria in the context of Load Balancing games. For the case of m unre-
lated machines, they proved that m ≤ SPoA ≤ 2m−1. Later, Fiat et al. [13] improved
these bounds and showed that SPoA = m for these games. The authors also proved
that for uniformly related machines the SPoA is Θ

(
log m/(log log m)2

)
. For results

in the context of more general scheduling games and associated scheduling policies
(called coordination mechanisms), the interested reader is referred to [18] and the
references therein.

Bottleneck Congestion games owe their name to their similarity to congestion
games, which were introduced by Rosenthal [24]. In these games, the latency on each
facility depends on the number of players using it (i.e., players have unit weights).
The goal of each player is to minimize his cost which is defined as the sum (as
opposed to the maximum for BCGs) of the latencies over the facilities used by the
player. Rosenthal [24] proved the existence of pure Nash equilibria in congestion
games, by usage of potential function arguments. Monderer and Shapley proved
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in [22] that the class of congestion games coincides isomorphically with the class
of finite potential games. The Price of Anarchy of pure Nash equilibria for conges-
tion games was resolved by Christodoulou and Koutsoupias [10] and, independently,
by Awerbuch, Azar and Epstein [4]. It is shown in [10] that PoA = Θ

(√
n
)

for
asymmetric linear congestion games and the social cost being the maximum over
the players’ costs, and PoA = 5

2 for (symmetric and asymmetric) linear congestion
games and the social cost being the sum of the players’ costs. Bounds for polynomial
latency functions were also derived in [10]. Exact bounds for polynomial latencies
and also for weighted players were developed in [1].

2 Preliminaries

In a Bottleneck Congestion game, we are given a set N = [n] of n players that want
to utilize non-cooperatively a set E = [m] of m resources, which we also refer to as
facilities.1 Every player i ∈ N has a positive weight (or load) wi > 0 and a strategy
set Σi ⊆ 2E of feasible facility subsets which he can choose from. If player i chooses
facility subset Si ∈ Σi , he allocates his entire weight wi to each facility e ∈ Si .
Let Σ = Σ1 × · · · × Σn be the set of all possible strategy choices of the players.
A strategy profile S = (S1, . . . , Sn) ∈ Σ specifies for each player i ∈ N a strategy
Si ∈ Σi that he has chosen. We define Ne(S) to be the set of players that have chosen
facility e ∈ E under S, i.e., Ne(S) = {i ∈ N | e ∈ Si}. The total weight of facility
e ∈ E with respect to S is defined as we(S) = ∑

i∈Ne(S)wi .
Every facility e ∈ E is associated with a latency function le : Σ → R

+, which
satisfies the following three properties (see also [17]):

1. Non-negativity: le(S) ≥ 0 for all S ∈ Σ .
2. Independence of irrelevant alternatives: le(S) = le(S

′) for all S, S ′ ∈ Σ with
Ne(S) = Ne(S

′).
3. Monotonicity: le(S) ≥ le(S

′) for all S, S ′ ∈ Σ with Ne(S) ⊇ Ne(S
′).

In this paper, we focus on linear latency (thus, also cost) functions; we motivate
our choice in Example 1 below. We call a game symmetric if all players have the
same strategy set, i.e., Σi = Σj for all i, j ∈ N ; we call a game asymmetric oth-
erwise. Under a given a strategy profile S ∈ Σ , every player i ∈ N experiences an
individual cost ci(S) equal to the latency of the facility in Si with the highest latency,
i.e., ci(S) = maxe∈Si le(S). We assume that every player i ∈ N acts strategically and
chooses his strategy Si ∈ Σi in order to minimize his own individual cost ci(S).

Aumann [3] introduced the notion of a strong equilibrium. Here we consider
the refined notion of k-strong equilibrium. We use the standard notation S−i for
(S1, . . . , Si−1, Si+1, . . . , Sn). Similarly, for a subset of players I ⊆ N we use SI and
S−I to refer to the strategy profiles induced by the strategies of players in I and N \I ,
respectively. For every facility e ∈ E and every subset of players I ⊆ N , we use the

1We use [k] to refer to the set {1, . . . , k} for some positive integer k.
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notation le(SI ) to denote the latency of e under the strategy profile SI , induced only
by the players in I (i.e., as if all players in N \ I are absent).

Definition 1 A strategy profile S ∈ Σ is a k-strong equilibrium if for every non-
empty player subset I ⊆ N with |I | ≤ k and for every possible joint deviation S ′

I of
I there is at least one player i ∈ I , whose cost with respect to S ′ = (

S−I , S ′
I

)
is not

stroctly better than with respect to S, i.e., ci

(
S−I , S ′

I

) ≥ ci(S).

With this definition, a strong equilibrium is a k-strong equilibrium with k = n,
and a pure Nash equilibrium is a k-strong equilibrium with k = 1. Very recently,
Harks, Klimm and Möhring [17] showed that strong equilibria always exist in BCGs
satisfying Properties 1–3 above.

We are interested in characterizing the inefficiency of k-strong equilibria for (lin-
ear latency) BCGs. We assess the efficiency of a strategy profile S by the maximum
load of a facility under S. That is, the social cost C(S) of a strategy profile S ∈ Σ is
defined as the maximum latency over all facilities, which is equivalent to the maxi-
mum cost over all players, i.e., C(S) = maxe∈E le(S) = maxi∈N ci(S). We will use
S∗ to refer to an optimal strategy profile that minimizes C(S) and denote its cost by
γ ∗ = C(S∗).

The k-strong Price of Anarchy (k-SPoA) [2, 20] refers to the worst-case ratio over
all possible input instances of the maximum cost of a k-strong equilibrium and the
cost γ ∗ of the social optimum. We will simply refer to the Price of Anarchy (PoA)
and strong Price of Anarchy (SPoA) for the 1-SPoA and the n-SPoA, respectively.

We next give an example showing that the SPoA is unbounded, even for symmet-
ric BCGs with arbitrary latency functions on the facilities satisfying Properties 1–3
above.

Example 1 We construct a BCG with n = 2 players and m = 3 facilities, denoted
e1, e2 and e3. Let Σ1 = {{e1}, {e2}} and Σ2 = {{e2}, {e3}}. The latency functions are
defined as follows. Let M  ε > 0.

le1(S) = ε, le3(S) = M, and le2(S) =
{

M if Ne2(S) = {1, 2}
ε otherwise.

The socially optimal strategy profile is S∗ = (
S∗

1 , S∗
2

)
with S∗

1 = {e1} and S∗
2 =

{e2}. We have C(S∗) = ε. Consider the strategy profile S = (S1, S2), where S1 =
{e2} and S2 = {e3}. Clearly, C(S) = M . We claim that S is a strong equilibrium.
Indeed, the only alternative strategy for player 1 is {e1}, which will incur him an
individual cost of ε = c1(S). This rules out a unilateral deviation of player 1, but
also a joint deviation along with player 2. The only alternative strategy for player 2
is {e2}, which will incur him a cost of M = c2(S), if he deviated unilaterally. The
SPoA in this example is at least M/ε.

We can easily modify the above instance to make it a symmetric BCG: we include
strategy {e1} in Σ2 and define le1(S) = ∞ if 2 ∈ Ne1(S) (thus, e1 ∈ S2). Similarly,
we include strategy {e3} in Σ1 and define le3(S) = ∞ if 1 ∈ Ne3(S) (thus, e3 ∈ S1).
Note that the latency functions of the resulting symmetric BCG satisfy Properties 1–3
above.
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A final comment is in order. Structurally, the BCG defined in Example 1 appears to
be identical to a Load Balancing game (such as the ones studied in [2]) with 2 players
and 3 machines. The difference, however, is in the definition of the latency functions.
In Load Balancing games the latency of each machine (facility) is additive in the
players’ loads (weights), whereas in our example the latencies are super-additive;
this is especially visible in the definition of le2 above.

This example motivates our study of linear BCGs. We assume that the latency
function le of each facility e ∈ E is a linear function of the total weight assigned
to it, i.e., le(S) = aewe(S) for some ae ≥ 0. Linear BCGs constitute an important
class of BCGs because they generalize, for example, various Load Balancing games
as outlined in the Introduction. In particular, Load Balancing games with uniformly
related [11] or identical machines, also involving restricted assignments (see [15]),
constitute important special cases of linear BCGs.

A BCG is called a network BCG if there exists a directed graph G = (V, E) such
that every player i ∈ N is associated with a source si ∈ V and a sink ti ∈ V and i’s
strategy set Σi refers to the set of all directed paths from si to ti in G. Observe that
the above example corresponds to a network BCG, with parallel links connecting a
single source node to a single sink (each facility corresponds to a distinct link).

Unless stated otherwise, we assume subsequently that all player weights are at
least one, i.e., wi ≥ 1 for every i ∈ N ; this assumption is without loss of generality
as we can always enforce it, by scaling the weights appropriately. Moreover, when
studying identical facilities, we assume that the latency functions are identities, i.e.,
le(S) = we(S) for every e ∈ E.

3 Facilities with Arbitrary Linear Latencies

In this section, we derive bounds on the PoA and SPoA of linear BCGs. We consider
both the general and the identical player case.

3.1 Arbitrarily Weighted Players

We first consider the most general case of arbitrary linear latency functions and arbi-
trary player weights. We show that the PoA is at most 2m − 1 in this case. We obtain
a better bound of m on the SPoA and present an almost tight lower bound.

Theorem 1 The Price of Anarchy of linear Bottleneck Congestion games is at most
2m − 1 and at least m.

Proof Let S be a pure Nash equilibrium with cost C(S) = αγ ∗ for some α ≥ 1. We
prove by induction that for every integer k, 1 ≤ k < α+1

2 + 1, there is a set Ek of k

distinct facilities such that for every e ∈ Ek, le(S) ≥ (α − k + 1)γ ∗.
The claim holds true for k = 1 because there must exist a facility e ∈ E with

latency le(S) = αγ ∗. Suppose that the induction hypothesis holds true for k < α+1
2 .

We will prove that there exists a set Ek+1 of k + 1 distinct facilities such that le(S) ≥
(α − k)γ ∗ for every e ∈ Ek+1. Choose from Ek a facility ê with the smallest ae,
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i.e., ê = arg mine∈Ek ae. By the induction hypothesis, we have lê(S) ≥ (α − k +
1)γ ∗ > kγ ∗. Let Iê = Nê(S) be the set of players choosing ê under S. Note that
wê(S) = lê(S)/aê > kγ ∗/aê. Consider the strategies that the players in Iê choose
under S∗ and suppose for the sake of deriving a contradiction that for every i ∈ Iê,
S∗

i ∩ Ek �= ∅. Then, by the pigeongole principle, there is a facility e ∈ Ek with
we(S

∗) ≥ wê(S)/k > γ ∗/aê. By the choice of ê, we have le(S
∗) = aewe(S

∗) > γ ∗,
which is a contradiction to the definition of γ ∗. Thus there is a player j ∈ Iê that
chooses a strategy S∗

j that is disjoint from Ek . Note that for every e ∈ S∗
j we have

aewj ≤ γ ∗. Since S is a pure Nash equilibrium, player j cannot decrease his cost by
deviating to S∗

j and, thus, there is some facility e′ ∈ S∗
j \ Sj such that:

le′ (S) = (
ae′we′ (S) + ae′wj

) − ae′wj

≥ ci(S) − ae′wj ≥ lê(S) − γ ∗ ≥ (α − k)γ ∗

The inductive step follows by setting Ek+1 = Ek∪{e′}. By choosing k = �α+1
2 � <

α+1
2 + 1, we obtain that there is a set Ek ⊆ E with |Ek| ≥ k and thus m ≥ |Ek| ≥

k ≥ α+1
2 . We conclude that PoA = α ≤ 2m − 1.

The following instance shows that PoA ≥ m, even for symmetric BCGs with
identical facilities and identical players. Consider a BCG with player set N = [n]
and facility set E = [m] with m = n. Every player i ∈ N has unit weight wi = 1 and
the latency function le(S) of every e ∈ E is the identity function, i.e., le(S) = we(S).
Suppose that each player i ∈ N has strategy set Σi = 2E . If every player chooses a
distinct facility we obtain an optimal strategy profile S∗ with γ ∗ = 1. On the other
hand, consider the strategy profile S in which every player utilizes all the facilities in
E. This is a pure Nash equilibrium of cost C(S) = m.

We derive a better upper bound on the SPoA for linear BCGs. The following key
lemma will be used several times in the paper.

Lemma 1 Let S be a strong equilibrium and let Iλ ⊆ I be a non-empty subset of
players such that for every i ∈ Iλ we have ci(S) ≥ λγ ∗, for some λ ≥ 1.

1. Then, there is a player i ∈ Iλ and a facility e ∈ S∗
i such that le(S−Iλ) ≥ (λ −

1)γ ∗.
2. Suppose that Iλ is maximal. Then, there is a subset of players Tλ ⊆ N \ Iλ with

w(Tλ) ≥ λ − 1 and for every i ∈ Tλ we have (λ − 1)γ ∗ ≤ ci(S) < λγ ∗.

Proof We first prove the first part of the lemma. Note that for every player i ∈ Iλ

and every e ∈ S∗
i we have

le
(
S∗

Iλ

) ≤ le
(
S∗) ≤ γ ∗. (1)

Suppose for the sake of a contradiction that for every player i ∈ Iλ and for
every e ∈ S∗

i it holds that le(S−Iλ) < (λ − 1)γ ∗. Consider the strategy profile
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S ′ =
(
S−Iλ , S∗

Iλ

)
in which the players in Iλ deviate to their optimal strategies in S∗.

Using (1), we obtain for every i ∈ Iλ and for every e ∈ S∗
i :

le
(
S ′) = le

(
S∗

Iλ

) + le
(
S−Iλ

)
< γ ∗ + (λ − 1)γ ∗ = λγ ∗. (2)

Thus, for every i ∈ Iλ, ci

(
S ′) = maxe∈S∗

i
le

(
S ′) < λγ ∗, which is a contradiction

to S being a strong equilibrium.
We next prove the second part of the lemma. Let i ∈ Iλ be a player and e ∈ S∗

i be
a facility satisfying le

(
S−Iλ

) ≥ (λ−1)γ ∗. Define Tλ as the set of players that choose
e under S but are not contained in Iλ, i.e., Tλ = Ne(S) \ Iλ ⊆ N \ Iλ. We have

aew(Tλ) = le(STλ) = le(S−Iλ) ≥ (λ − 1)γ ∗. (3)

Since e ∈ S∗
i and wi ≥ 1 for every i ∈ N , we have ae ≤ γ ∗. Thus, w(Tλ) ≥

λ − 1. Consider an arbitrary player i ∈ Tλ. By the above we have, ci(S) ≥ le(S) ≥
le(STλ) ≥ (λ − 1)γ ∗. Moreover, by the maximality of Iλ and since i �∈ Iλ, we have
ci(S) < λγ ∗.

Remark 1 Observe that in the above proof we exploit the linearity of the latency
functions only in (2). In fact, we can draw exactly the same conclusion if all latency
functions are sub-additive, i.e., for every e ∈ E, le(x + y) ≤ le(x) + le(y) for every
x, y ∈ R

+. As a consequence, all our upper bounds on the SPoA that exploit the first
part of Lemma 1 hold for sub-additive latency functions.

Theorem 2 The strong Price of Anarchy of linear Bottleneck Congestion games is
at most m.

Proof Let S be a strong equilibrium with cost C(S) = αγ ∗ for some α > 1. For
an arbitrary real value 1 < λ ≤ α, let Iλ be the maximal non-empty set of players
Iλ = {i ∈ N | ci(S) ≥ λγ ∗}. Applying Lemma 1, we obtain a player set Tλ such that
for every i ∈ Tλ we have (λ − 1)γ ∗ ≤ ci(S) < λγ ∗. Moreover, w(Tλ) ≥ λ − 1 > 0
because λ > 1 and, thus, Tλ is non-empty. We can thus identify a family F =
{Tα, Tα−1, . . . , Tα−k} of k + 1 player sets that are non-empty and pairwise disjoint,
where k is the largest integer satisfying α − k > 1. Every set Tλ ∈ F identifies at
least one distinct facility e ∈ E with (λ − 1)γ ∗ ≤ le(S) < λγ ∗. Moreover, there is
one facility e ∈ E with le(S) = αγ ∗. We conclude that m ≥ |F | + 1 = k + 2 ≥ α

and, thus, SPoA = α ≤ m.

Theorem 3 The strong Price of Anarchy is at least m − 1 in general linear Bot-
tleneck Congestion games and at least m+1

3 in single-sink linear network Bottleneck
Congestion games.

Proof We describe a directed network BCG; the general case will follow directly.
Define 0! = 1 and let player i ∈ [n] have weight wi = 1/(i − 1)! and a source vertex
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si . There is a single sink t for all players and n−1 auxiliary vertices vi , i = 2, . . . , n.
The set of arcs is E = E1 ∪ E2 ∪ { (s1, t), (sn, t) }, where:

E1 = {
(si , vi+1)

∣∣ i = 1, . . . , n − 1
} ∪ {

(si , vi)
∣∣ i = 2, . . . , n

}
E2 = {

(vi, t)
∣∣ i = 2, . . . , n

}
Then, m = |E| = |E1| + |E2| + 2 = 2(n − 1) + (n − 1) + 2 = 3n − 1. For each

arc e ∈ E1 set ae = 1. For i = 2, . . . , n− 1 let a(vi,t) = (i − 1)!. Also, set a(s1,t) = 1
and a(sn,t) = n!. An example for the case n = 4 appears in Fig. 1. Each player has
two strategies, an upper path { (si , vi+1), (vi+1, t) }, i = 1, . . . , n − 1, and a lower
path { (si , vi), (vi, t) }, i = 2, . . . , n. The upper path of player n is {(sn, t)} and the
lower path of player 1 is { (s1, t) }.

Under configuration S, wherein all players play their upper paths we have ci(S) =
i!/(i − 1)! = i, thus C(S) = n = m+1

3 . We claim S is a strong equilibrium. Con-
sider deviation of any coalition I ⊆ N and call S ′ the resulting profile. Let i be
a player of minimum index in I and assume first i ≥ 2. Then, under S and S ′,
i − 1 plays his upper path, { (si−1, vi), (vi, t) }. The only deviation available to i is
{ (si , vi), (vi, t) }. Then:

ci(S
′) = max

{
l(si ,vi)(S

′), l(vi ,t)(S
′)

}
= max

{
1

(i − 1)! , (i − 1)! ·
(

1

(i − 1)! + 1

(i − 2)!
)}

= max

{
1

(i − 1)! , 1 + (i − 1)

}
= i = ci(S)

Player 1 will not participate in any coalition, because a cost of 1 is incurred to
him under S and when playing his lower path. Then S is a strong equilibrium. In the
socially optimum configuration every player plays his lower path alone and has cost
ci(S

∗) = (i − 1)!/(i − 1)! = 1. Thus SpoA ≥ m+1
3 . For the general case we simply

regard links in { (s1, t) } ∪ E2 ∪ { (sn, t) } as m = n + 1 facilities ej , j ∈ [n + 1] and

Fig. 1 An example of a
single-sink linear network BCG
used to prove the lower bound of
Theorem 3. There are n = 4
players and m = 11 links. Player
i has weight wi and source node
si . Each link is labeled with its
latency factor. If every player
plays the “lower” path available
to him, the maximum latency on
any facility is 1. If every player
plays the “upper” path available
to him, the maximum latency on
any facility is 4 = (m + 1)/3
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restrict every player’s i strategy space to { ei , ei+1 }. If every player plays ei+1 we
obtain a strong equilibrium similar to S described above. The social optimum occurs
when player i plays ei . We omit a detailed analysis because a similar construction
appeared in [15].

3.2 Identically Weighted Players

We next derive an upper bound on the SPoA for linear BCGs if the weights of all
players are identical. In this subsection, we assume, without loss of generality, that
the weight of each player i ∈ N is wi = 1.

Theorem 4 The strong Price of Anarchy of linear Bottleneck Congestion games with

identically weighted players is, in general, at most 1
2 +

√
2n − 3

2 ; it is exactly 2 for
symmetric such games.

Proof We prove the first part of the theorem. Let S be a strong equilibrium with
cost C(S) = αγ ∗ for some α > 1. As in the proof of Theorem 2, we can apply
Lemma 1 to identify a family F = {Tα, Tα−1, . . . , Tα−k} of k + 1 player sets that are
non-empty and pairwise disjoint, where k is the largest integer satisfying α − k > 1.
Each such set Tλ ∈ F contains at least λ − 1 players, i.e., |Tλ| ≥ �λ − 1� for every
α − k ≤ λ ≤ α. Moreover, there is at least one player that experiences a congestion
of αγ ∗. Thus:

n ≥ 1 +
�α−1�∑
λ=1

λ ≥ 1 + α(α − 1)

2
.

Solving for α, we obtain α ≤ 1/2 + √
2n − 3/2.

We next prove the second part of the theorem. In a strong equilibrium S, at least
one player i ∈ N must have cost ci(S) ≤ γ ∗ since otherwise the grand coalition
could deviate to the socially optimal strategy profile. Suppose there is a player j ∈ N

whose cost is more than two times larger than the cost of i. Consider the deviation
S ′ = (S−j , Si) where player j deviates to the strategy of player i. Then cj (S

′) ≤
maxe∈Si ae(we(S) + 1) ≤ maxe∈Si 2aewe(S) ≤ 2ci(S), which is a contradiction to S

being a strong equilibrium.
The following example establishes the tightness of this bound. Let N = [3] and

E = [6]. Every player i ∈ N has weight wi = 1 and every facility e ∈ E incurs
latency ae = 1 per unit of load. The strategy set of every player is:

{σ1 = {e1}, σ2 = {e2, e3}, σ3 = {e4, e5}, σ4 = {e2, e5, e6} } .

The social optimum is S∗
i = σi for every player i ∈ [3] with γ ∗ = 1. A strong

equilibirum is given by S1 = σ4 and S2 = S3 = σ1. The cost of S is C(S) = 2. It
is easy to see that this example is a (symmetric) network BCG, as depicted in Fig. 2;
define the directed arcs e1 = (s, t), e2 = (s, u), e3 = (u, t), e4 = (s, v), e5 = (v, t),
and e6 = (u, v). Then each strategy corresponds to an (directed) s – t path.
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Fig. 2 A symmetric network
linear BCG instance with
identical links as used in the
proof of Theorem 4. The strong
Price of Anarchy is at least 2 on
this instance

4 Facilities with Identical Linear Latencies

In this section, we study the SPoA for the case of linear BCGs with identical facilities,
i.e., the latency function of every facility e ∈ E is le(S) = we(S).

Theorem 5 The strong Price of Anarchy of linear Bottleneck Congestion games with

identical facilities is at most − 1
2 +

√
2m + 1

4 , in general, and exactly 2 in the case of
symmetric games.

Proof For the symmetric case we claim that in any strong equilibrium configuration
S, there is at least one player i0 with ci0(S) ≤ γ ∗. Indeed, if ci(S) > γ ∗ for all
players i, then the grand coalition would deviate to S∗. Now for any player i we have
γ ∗ ≥ wi . Let i be any player with e ∈ Si such that ci(S) = le(S) = C(S). Consider
unilateral deviation S ′

i = Si0 of i. Then, because S is also a pure Nash equilibrium,
C(S) = ci(S) ≤ ci0(S)+wi ≤ 2γ ∗. A tight lower bound has already been presented
in Theorem 4 (with a directly corresponding network example in Fig. 2).

For the asymmetric case let the cost of a strong equilibrium S be C(S) = αγ ∗, for
some α > 1. Similar to the proof of Theorem 2, let Iλ be the maximal non-empty set
of players Iλ = {i ∈ N |ci(S) ≥ λγ ∗} for some 1 < λ ≤ α. By Lemma 1, we obtain
a player set Tλ such that for every i ∈ Tλ we have (λ − 1)γ ∗ ≤ ci(S) < λγ ∗. We
can refine the argument given in the proof of Lemma 1 to bound the weight of Tλ for
identical facilities as follows: By inequality (3), we have w(Tλ) ≥ (λ − 1)γ ∗/ae =
(λ − 1)γ ∗, where the last equality holds because for identical facilities ae = 1 for
every e ∈ E. Moreover, w(Tλ) ≥ (λ − 1)γ ∗ > 0 because λ > 1 and thus Tλ is non-
empty. That is, we can identify a family F = {Tα, Tα−1, . . . , Tα−k} of k + 1 player
sets that are non-empty and pairwise disjoint, where k is the largest integer satisfying
α − k > 1. Moreover, by construction we have Iα ∩ Tλ = ∅ for every Tλ ∈ F and
w(Iα) ≥ αγ ∗ since facilities are identical. The total weight w(N) is then:

w(N) ≥ αγ ∗ +
α∑

λ=α−k

w(Tλ) ≥ αγ ∗ +
α∑

λ=α−k

(λ − 1)γ ∗

≥ αγ ∗ +
α−1∑
λ=0

λγ ∗ = αγ ∗ +
α−1∑
λ=1

λγ ∗ =
α∑

λ=1

λγ ∗
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The latter equals 1
2αγ ∗(1 + α). Observe that γ ∗ ≥ w(N)/m because facilities are

identical. We obtain 2m ≥ α(1+α) or, equivalently, α ≤ −1/2+√
2m + 1/4. Since

SPoA ≤ α the claim follows.

Theorem 6 The strong Price of Anarchy of linear Bottleneck Congestion games with

identical players and identical facilities is at least

⌊
− 1

2 +
√

2m + 1
4

⌋
. For single-

sink linear network Bottleneck Congestion games, it is at least
⌊
− 1

4 + 1
2

√
2 + 2m

⌋
.

Proof We give a family of instances with m facilities and n = Θ(m) unweighted
players, which we turn into a family of network instances subsequently. Consider a
partition of the set of players N into q subsets, N = ⋃q

j=1 Pj , where |Pj | = j ,
j ∈ [q]. Denote players in Pj by pji , i ∈ [j ]. For each subset Pj make a new set of j

distinct facilities Ej =
{
e
j

1 , . . . , e
j

j

}
. Define Eq+1 = E1. For every player pji ∈ Pj ,

i ∈ [j ], set the strategy space of pji to:

Σpji = {{e} ∣∣ e ∈ Ej

} ∪ {
Ej+1

}
For the socially optimal configuration set S∗

pji
=

{
e
j

i

}
. Then C(s∗) = 1. Now

consider the configuration S where Spji = Ej+1 for i ∈ [j ], j ∈ [q]. The cost of S

is defined by the latency of the unique facility e = e1
1 ∈ E1 and is C(S) = le(S) =

|Pq | = q . For every player p ∈ Pj , we have cp(S) = j . We claim that S is a strong
equilibrium. Consider any deviation of any coalition I ⊆ N . Denote by S ′

p the novel
strategy that any player p ∈ I adopts and let S ′ denote the resulting configuration.
Notice that for the unique player p ∈ P1 we have cp(S) = 1, hence no deviation may
lessen his cost and P1 ∩ I = ∅.

Let j = min
{
j ′ | Pj ′ ∩ I �= ∅

}
; then j ≥ 2, and S ′

j ∩ Ej �= ∅. For all j − 1
players pj−1,i ∈ Pj−1 it holds that Spj−1,i

= Ej , because I ∩ Pj−1 = ∅. Hence,
cj (S

′) = j − 1 + 1 = j = cj (S). In any deviation of any coalition I , at least one
player does not have an incentive to deviate jointly with I and, hence, SpoA ≥ q .
Now q is the largest integer satisfying m = | ∪j Ej | ≥ ∑q

j=1j = q(q + 1)/2, which

yields q = �−1/2 + √
2m + 1/4�.

We convert the example into a network BCG. To grant access to players in Pj−1
to facilities in Ej , we make a path of length 3,

{
(sj , uji), (uji, vji), (vji, t)

}
, for

every facility e
j

i ∈ Ej , i ≤ j − 1 and a length-2 path
{
(sj , ujj ), (ujj , t)

}
for

e
j

j . Let Aj be the set of arcs in these paths. Node sj is the source of all play-
ers in Pj and t is a common sink for all players. Now we add auxiliary arcs
A′

j = {
(vji, uj,i+1) | i ∈ [j − 1]}. And, finally, an arc (sj−1, uj1), j ∈ {2, . . . , q},

by which players Pj−1 gain access to Aj . For the last group of players we add an arc(
sq, t

)
. Let us illustrate the analog of configuration S on the constructed network. All

players in pji ∈ Pj , i ∈ [j ], play the same path strategy:

Sji = { (
sj , uj+1,1

) }
∪ {(

uj+1,r , vj+1,r

)
,
(
vj+1,r , uj+1,r+1

) | r ∈ [j ] }
∪ { (

uj+1,j+1, t
) }



Theory Comput Syst

and Siq = (
sq , t

)
for i ∈ [q]. See Fig. 3 for an example with q = 4. The proof

that S is strong is analogous to the proof given for the non-network example. For the
optimal configuration we set S∗

ji = {
(sj , uji), (uji , vji), (vji, t)

}
, for each player

pij ∈ Pj , i < j , and Sjj = {
(sj , ujj ), (ujj , t)

}
. We identify q as the largest integer

satisfying for the total number of links m:

m ≥
q∑

j=1

(
|Aj | + |A′

j |
)

+ q =
q∑

j=1

(3j − 1 + (j − 1)) + q − 1 = 2q2 + q − 1

which yields q =
⌊
− 1

4 + 1
2

√
2 + 2m

⌋
.

4.1 k-Strong Equilibria

In this subsection, we derive more refined lower bounds for the k-SPoA for asym-
metric and symmetric BCGs with identical facilities. Particularly, in the symmetric
case, we exhibit a lower bound for the k-SpoA of symmetric network linear BCGs
which is of the same order as for general symmetric linear BCGs (Theorem 8 below).

Fig. 3 An example for the SpoA on a single-sink network BCG with 35 identical links and 10 identical
players. The strong equilibrium configuration consists of the dotted paths for all players with the same
source node and incurs a maximum latency of 4 on the uppermost link in the figure. The social optimum
has a cost of 1 and occurs if each player utilizes a distinct (lowermost possible) path from his source node
to t . Then, SpoA = 4 ≥ − 1

4 + 1
2

√
2 + 2m (Theorem 6)
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Theorem 7 For any k ≥ 2, the k-strong Price of Anarchy of linear Bottleneck

Congestion games is at least max

{ ⌊
m

k−1

⌋
− 1,

⌊
− 1

2 +
√

2m + 1
4

⌋}
.

Proof Take an instance with a set E of m identical facilities and a set N of n =
|N | = m identical players (of unit weights). For k ≤ �√m + 1�, we divide the facil-
ities and the players into p = k − 1 groups 〈E0, N0〉 , 〈E1, N1〉 , . . . ,

〈
Ep−1, Np−1

〉
.

For each group 〈Er, Nr〉, we place
⌊

m
k−1

⌋
facilities in Er and

⌊
m

k−1

⌋
players in Nr .

The remaining at most k − 2 players and k − 2 facilities are distributed into the
existent groups (one player and facility per group). These players and facilities we
call residual. We shall not be concerned with residual players and facilities in our
construction; for a residual player i ∈ Nr , we will have the corresponding residual
facility, e ∈ Er , to be the player’s only available strategy. Moreover, the residual
facility e will not be part of any other player’s strategy. Thus, we may ignore exis-
tence of residual players and facilities, as they will not affect the strategic choices of

other players, or be affected by them. Then, define q =
⌊

m
k−1

⌋
and, without loss of

generality, we assume q = |Er | = |Nr |, for r = 0, . . . , p − 1; we name the facilities
in Er by er

0, . . . , er
q−1. Let [·]q denote (·) mod q . For r = 0, . . . , p − 1, we define

over Er two kinds of strategies, called sr
j and σ r

j , for every j ∈ {0, . . . , q − 1}:

sr
j =

{
er
j+1, . . . , er[j+q−1]q

}
, σ r

j =
{

er
j

}

Now any specific subset Nr contains q players. Assume w.l.o.g. that they are
indexed by i ∈ {0, . . . , q − 1}. For a socially optimal configuration, S∗, we set

S∗
i = σ

[r+1]p
i for i = 0, . . . , q − 1. Then, each player uses exactly one facility under

S∗ and C(S∗) = 1.
Now consider the configuration S, where for each i ∈ Nr , Si = sr

i . We make

this strategy, along with σ
[r+1]p
i , to be the only two available strategies for i. Under

S, every player from Nr plays |Er | − 1 = q − 1 distinct facilities from Er and
each different player has a different facility of Er left out of his strategy, Si . Thus,

C(S) = q − 1 =
⌊

m
k−1

⌋
− 1. An example of a 3-strong such configuration S with

m = 10 facilities and n = m = 10 players is described in Fig. 4, along with the
previously described socially optimal configuration.

We argue that S is a k-strong equilibrium. Consider any coalition, I ⊆ N , of
players that attempt to switch to their socially optimal strategies. We will show that

Fig. 4 An example for the 3-SPoA of asymmetric linear BCGs with identical facilities (Theorem 7),
involving m = 10 facilities (depicted as boxes) and n = m = 10 identical players. Each facility is labeled
(inside the box) with the index of a single player using it in the socially optimal configuration. Player
indices on the top denote players using each facility at 3-strong equilibrium
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|I | ≥ k + 1. First, we show that I must contain at least one player from every group.
Indeed, let ir ∈ I ⊆ Nr for any r = 0, . . . , p − 1. Then, ir has an optimum singleton
strategy in E[r+1]p . Thus, at least two players from N[r+1]p (using under S the single
optimum facility, er

i , of ir ) must belong to I , so that it is beneficial for ir to deviate
to his (only alternative) optimum strategy. Then, we deduce inductively that I must
contain players from each of the p = k − 1 distinct groups. Secondly, we observe
that, from each group, there must exist in I at least 2 players from each group, so that
a beneficial (socially optimal) strategy is created for some other player of I (outside
the group), to switch to. Otherwise, some player will not be able to strictly improve
his cost by deviating jointly within I . Thus, we obtain |I | ≥ k + 1.

For an illustration of the argument, consider the example of Fig. 4 which depicts a
3-strong equilibrium. Only a joint deviation of 4 (or more) players is possible: each
player in I = {0, 1, 7, 8} can switch jointly to their optimal strategies and improve
their cost by 1.

Combination of the lower bound C(S)/C(S∗) obtained above, with the one shown
earlier in Theorem 6 for strong equilibria (that are also k-strong for any value of k),
yields the result.

For the social inefficiency of k-strong equilibria in symmetric linear BCGs we
obtain the following result.

Theorem 8 The k-strong Price of Anarchy of symmetric linear Bottleneck Conges-
tion games is at least max{ 2, �m/(2k)� }. It is at least max{ 2, �(m + 2)/(6k)� } for
symmetric network linear Bottleneck Congestion games.

Proof Take n identical players (of unit weight) and a set of m = 2n identical facili-
ties E∪F , where E = {ej | j = 0, . . . , n−1}, F = {fj | j = 0, . . . , n−1}. Without
loss of generality, we index the players by i = 0, . . . , n − 1. Let us first define the
strategy space of player i. A strategy of player i consists of any contiguous ordered
sequence of facilities ej , . . . , et , followed by any contiguous ordered sequence of
facilities ft , . . . , fl . We allow sequences of facilities in E or F , that “wrap around”
modulo n. In the socially optimal configuration player i plays {ei, fi} and the social
cost is 1.

Now we demonstrate a k-strong equilibrium configuration. Let q = ⌈
n
k

⌉ − 1. Set
the strategy of player i, to Si = {{ei, . . . , e[i+q]n}, {f[i+q]n, . . . , f[i+2q]n}

}
, where

for any i = 0, . . . , n − 1, we define [i + q]n = (i + q) mod n. This way each
player uses 2(q + 1) facilities, q + 1 from set E and q + 1 from set F . Now we
note that every facility in E or F is the first for some player, the second for another
and, continuing in the same manner, the (q + 1)-th for some player (distinct from the
previous ones). Hence every facility is used by exactly q + 1 players, which yields
C(S) = ⌈

n
k

⌉ = ⌈
m
2k

⌉
.

We claim that S is a k-strong equilibrium. Consider deviation of any coalition I ⊆
N , |I | ≤ k. We examine the number of valid beneficial strategies that emerge under
S−I , for members of I to adopt in the new configuration. First we notice that removal
of any pair of players i1, i2 from the configuration does not incur a strictly more
beneficial valid strategy for any of them. In particular, the most beneficial strategy
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will include either
{
e[i1+q]n , f[i1+q]n

}
or

{
e[i2+q]n , f[i2+q]n

}
. However Si1 and Si2

may intersect in at most one facility from each of these sets. Hence there is a facility
with cost C(S) − 1 in both sets. Now we consider successive removal of players ir ,
r = 3, . . . , k. Strategy Sir can intersect at best with the strategy of one of i1, i2 at{
e[ir+q]n

}
and with the strategy of the other at

{
f[ir+q]n

}
. Thus, removal of i3 creates

a beneficial strategy
{
e[ir+q]n , f[ir+q]n

}
of cost C(S)−2, for one player (out of i1, i2,

i3). At most q such strategies may be created by removal of q players whose strategies
intersect “in their middle” with Si1 , Si2 appropriately. In any case, we may not create
more than k − 2 beneficial strategies, by removal of k players. Thus S is k-strong.

By combining the derived lower bound C(S)/C(S∗) with the lower bound from
Theorem 4, we conclude the proof of the first statement of the result.

For the second statement, we present a network version of the example discussed
above. A link is made for each facility ej , which is followed by a link for facility
fj . Arc ej leads by an additional link to arc e[j+1]n . Similarly for each arc fj and
f[j+1]n . Finally, we use n − 1 additional arcs for making all players emanate from
a single source and n − 1 arcs to guide them to a single sink. The source is the tail
vertex of some arc in E and the sink is the head vertex of some arc in F . In total
we use m = 6n − 2 arcs, which yields a k-SpoA lower bound of

⌈
n
k

⌉ =
⌈

m+2
6k

⌉
.

By combining this bound with the lower bound of Theorem 4 (which is a network
example, as depicted in Fig. 2), we conclude the proof of the second statement.

For an illustration of this construction, Fig. 5 presents a 2-strong equilibrium for
6 identical players and 34 identical links. The maximum latency over all links under
this configuration is 3. The social optimum has cost 1 and emerges when all players
use link-disjoint paths to reach t from s.

Fig. 5 A lower bounding example for the 2-SPoA of symmetric network linear BCGs with identical links
(Theorem 8), involving 6 identical players. Player indices mark the links used by each player at 2-strong
equilibrium. In the socially optimal configuration each of the players uses a distinct path from s to t , that
is disjoint from the paths used by other players. 6 such paths are visibly existent in the figure
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5 Summary and Open Problems

In this work, we derived inefficiency bounds for equilibria of linear Bottleneck Con-
gestion games. These games generalize Load Balancing games, which have been
investigated extensively in the literature [11, 15, 21]. In particular, we proved upper
and lower bounds on the Price of Anarchy of pure Nash equilibria and strong equi-
libria of linear BCGs. We considered several special cases of these games, including
identical players, identical facilities and symmetric strategy spaces. For most of our
lower bounds we were able to provide asymptotically equivalent network worst-case
examples, wherein the players’ strategies constitute paths over directed networks.

There are still several problems that remain to be resolved, towards completing our
understanding of the social inefficiency of equilibria in linear BCGs. In particular,
we miss tight upper and lower bounds for symmetric linear BCGs (with arbitrarily
weighted players). Additionally, it would be interesting to derive tight upper bounds
for the k-strong Price of Anarchy for BCGs with identical facilities to obtain a com-
plete picture of the model’s performance in dependence on the size of the coalitions
that can deviate. Finally, it would be also very interesting to derive tight bounds for
networks BCGs.
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