33 research outputs found

    OPTIMIZATION OF TEST/DIAGNOSIS/REWORK LOCATION(S) AND CHARACTERISTICS IN ELECTRONIC SYSTEMS ASSEMBLY

    Get PDF
    ABSTRACT Title of Dissertation: OPTIMIZATION OF TEST/DIAGNOSIS/REWORK LOCATION(S) AND CHARACTERISTICS IN ELECTRONIC SYSTEMS ASSEMBLY Zhen Shi, Doctor of Philosophy, 2004 Dissertation directed by: Associate Professor Peter A. Sandborn Department of Mechanical Engineering For electronic systems it is not uncommon for 60% or more of the recurring cost to be associated with testing. Performing tradeoffs associated with where in a process to test and what level of test, diagnosis and rework to perform are key to optimizing the cost and yield of an electronic system's assembly. In this dissertation, a methodology that uses a real-coded genetic algorithm has been developed to minimize the yielded cost of electronic products by optimizing the locations of test, diagnosis and rework operations and their characteristics. This dissertation presents a test, diagnosis, and rework analysis model for use in electronic systems assembly. The approach includes a model of functional test operations characterized by fault coverage, false positives, and defects introduced in test; in addition, rework and diagnosis operations (diagnostic test) have variable success rates and their own defect introduction mechanisms. The model accommodates multiple rework attempts on a product instance. For use in practical assembly processes, the model has been extended by defining a general form of the relationship between test cost and fault coverage. The model is applied within a framework for optimizing the location(s) and characteristics (fault coverage/test cost and rework attempts) of Test/Diagnosis/Rework (TDR) operations in a general assembly process. A new search algorithm called Waiting Sequence Search (WSS) is applied to traverse a general process flow to perform the cumulative calculation of a yielded cost objective function. Real-Coded Genetic Algorithms (RCGAs) are used to perform a multi-variable optimization that minimizes yielded cost. Several simple cases are analyzed for validation and general complex process flows are used to demonstrate the applicability of the algorithm. A real multichip module (MCM) manufacturing and assembly process is used to demonstrate that the optimization methodology developed in this dissertation can find test and rework solutions that have lower yielded cost than solutions calculated by manually choosing the test strategies and characteristics. The optimization methodology with Monte Carlo methods included for the process flow under uncertain inputs is also addressed in this dissertation. It is anticipated that this research will improve the ability of manufacturing engineers to place TDR operations in a process flow. The ability to optimize the TDR operations can also be used as a feedback to a Design for Test (DFT) analysis of the electronic systems showing which portion of the system should be redesigned to accommodate testing for a higher level of fault coverage, and where there is less need for test

    Design specifications for manufacturability of MCM-C multichip modules

    Full text link

    Materials for high-density electronic packaging and interconnection

    Get PDF
    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production

    Bubble memory module

    Get PDF
    Design, fabrication and test of partially populated prototype recorder using 100 kilobit serial chips is described. Electrical interface, operating modes, and mechanical design of several module configurations are discussed. Fabrication and test of the module demonstrated the practicality of multiplexing resulting in lower power, weight, and volume. This effort resulted in the completion of a module consisting of a fully engineered printed circuit storage board populated with 5 of 8 possible cells and a wire wrapped electronics board. Interface of the module is 16 bits parallel at a maximum of 1.33 megabits per second data rate on either of two interface buses

    Glass multilayer bonding for high density interconnect substrates

    Get PDF
    The aim of this research was the investigation of bonding borosilicate glass sheets, its trade mark CMZ, 100渭m thickness, to create multilayer substrates capable of supporting high-density electrical interconnections. CMZ glass was chosen as it has a coefficient of thermal expansion that is close to that of silicon, thereby minimising thermal stresses in assemblies generated by manufacturing processes or service conditions. Two different methods of bonding the glass were used in this study; pressure assisted low temperature bonding (PALTB), and water glass bonding, using Sodium Trisilicate (Na2Si3O7) solution. These two bonding methods have already been applied in electronics manufacturing applications, such as silicon wafer bonding and multichip modules (MCMs). However, glass-to-glass bonding is a relatively new subject and this study is an attempt to standardise bonding processes. Additionally, the concept of using glass as a multilayer substrate provides a foundation for further exploration by other investigators. Initial tests that were carried out before standardising the procedures for these two methods showed that a two-stage bonding process provided optimum results. A preliminary stage commenced by placing the cleaned (using Decon 90 solution) samples in a vacuum oven for 15 minutes, then heating at 100oC for 1hr. The permanent stage was then achieved by heating the samples in a conventional oven at temperatures from 200 to 400oC, for different periods. At this stage, the main difference between the two methods was the application of pressure (1-2MPa) during heating of the PALTB samples. To evaluate the quality of the bonds, qualitative tests such as visual, optical microscope and dye penetrant were used. In addition, to estimate the strength and the rigidity of the interlayer bonds, two quantitative tests, comprising of deflection under cyclic stresses and crack opening were used. Thermal cycling and humidity tests were also used to assess resistance of the bonds to environmental effects. The results showed that heating to 100oC was insufficient to enhance the bonds, as occasionally a sudden increase of deflection was observed indicating slippage/delamination. These bonds were enhanced during the permanent bonding stage by heating to 300oC in PALTB, under a pressure of 1-2MPa. The crack-opening test showed that the delamination distances of the bonds in the permanent stage were lower than that for preliminary bonding in both bonding methods. The delamination distances from the crack opening tests were used to calculate the strain energy release rate (GIC) and fracture toughness (KIC) values of the interlayers. The results showed that the KIC values of the permanent PALTB and water glass interlayers were higher than 1MPa.m0.5, while the KIC value of the CMZ glass, determined by linear elastic fracture mechanics, was around 0.8MPa.m0.5. The optical observations revealed that the prepared bonded sheets did not delaminate or break after thermal cycling and humidity tests

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Improving the management of system development to produce more affordable military avionics systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design & Management Program, 2003.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections."February 2003."Includes bibliographical references (p. 126-127).by Jeremy P. Tondreault.S.M

    Redundant disk arrays: Reliable, parallel secondary storage

    Get PDF
    During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures

    Microelectronic device data handbook. Volume 1 - Text

    Get PDF
    Microelectronic device data handbook /text
    corecore