1,833 research outputs found

    A Survey of 2D and 3D Shape Descriptors

    Get PDF

    IMAGE SEARCH ENGINE BASED ON COMBINED FEATURES OF IMAGE SUB-BLOCKS

    Get PDF
    In this paper we propose a new and efficient technique to retrieve images based on sum of the values of Local Histogram and GLCM (Gray Level Co-occurrence Matrix) texture of image sub-blocks to enhance the retrieval performance. The image is divided into sub blocks of equal size. Then the color and texture features of each sub-block are computed. Most of the image retrieval techniques used Histograms for indexing. Histograms describe global intensity distribution. They are very easy to compute and are insensitive to small changes in object translations and rotations. Our main focus is on separation of the image bins (histogram value divisions by frequency) followed by calculating the sum of values, and using them as image local features. At first, the histogram is calculated for an image sub-block. After that, it is subdivided into 16 equal bins and the sum of local values is calculated and stored. Similarly the texture features are extracted based on GLCM. The four statistic features of GLCM i.e. entropy, energy, inverse difference and contrast are used as texture features. These four features are computed in four directions (00, 450, 900, and 1350). A total of 16 texture values are computed per an image sub-block. An integrated matching scheme based on Most Similar Highest Priority (MSHP) principle is used to compare the query and target image. The adjacency matrix of a bipartite graph is formed using the sub-blocks of query and target image. This matrix is used for matching the images. Sum of the differences between each bin of the query and target image histogram is used as a distance measure for Local Histogram and Euclidean distance is adopted for texture features. Weighted combined distance is used in retrieving the images. The experimental results show that the proposed method has achieved highest retrieval performance

    The Optimisation of Elementary and Integrative Content-Based Image Retrieval Techniques

    Get PDF
    Image retrieval plays a major role in many image processing applications. However, a number of factors (e.g. rotation, non-uniform illumination, noise and lack of spatial information) can disrupt the outputs of image retrieval systems such that they cannot produce the desired results. In recent years, many researchers have introduced different approaches to overcome this problem. Colour-based CBIR (content-based image retrieval) and shape-based CBIR were the most commonly used techniques for obtaining image signatures. Although the colour histogram and shape descriptor have produced satisfactory results for certain applications, they still suffer many theoretical and practical problems. A prominent one among them is the well-known “curse of dimensionality “. In this research, a new Fuzzy Fusion-based Colour and Shape Signature (FFCSS) approach for integrating colour-only and shape-only features has been investigated to produce an effective image feature vector for database retrieval. The proposed technique is based on an optimised fuzzy colour scheme and robust shape descriptors. Experimental tests were carried out to check the behaviour of the FFCSS-based system, including sensitivity and robustness of the proposed signature of the sampled images, especially under varied conditions of, rotation, scaling, noise and light intensity. To further improve retrieval efficiency of the devised signature model, the target image repositories were clustered into several groups using the k-means clustering algorithm at system runtime, where the search begins at the centres of each cluster. The FFCSS-based approach has proven superior to other benchmarked classic CBIR methods, hence this research makes a substantial contribution towards corresponding theoretical and practical fronts

    Multi-faceted Assessment of Trademark Similarity

    Get PDF
    Trademarks are intellectual property assets with potentially high reputational value. Their infringement may lead to lost revenue, lower profits and damages to brand reputation. A test normally conducted to check whether a trademark is highly likely to infringe other existing, already registered, trademarks is called a likelihood of confusion test. One of the most influential factors in this test is establishing similarity in appearance, meaning or sound. However, even though the trademark registration process suggests a multi-faceted similarity assessment, relevant research in expert systems mainly focuses on computing individual aspects of similarity between trademarks. Therefore, this paper contributes to the knowledge in this field by proposing a method, which, similar to the way people perceive trademarks, blends together the three fundamental aspects of trademark similarity and produces an aggregated score based on the individual visual, semantic and phonetic assessments. In particular, semantic similarity is a new aspect, which has not been considered by other researchers in approaches aimed at providing decision support in trademark similarity assessment. Another specific scientific contribution of this paper is the innovative integration, using a fuzzy engine, of three independent assessments, which collectively provide a more balanced and human-centered view on potential infringement problems. In addition, the paper introduces the concept of degree of similarity since the line between similar and dissimilar trademarks is not always easy to define especially when dealing with blending three very different assessments. The work described in the paper is evaluated using a database comprising 1,400 trademarks compiled from a collection of real legal cases of trademark disputes. The evaluation involved two experiments. The first experiment employed information retrieval measures to test the classification accuracy of the proposed method while the second used human collective opinion to examine correlations between the trademark scoring/rating and the ranking of the proposed method, and human judgment. In the first experiment, the proposed method improved the F-score, precision and accuracy of classification by 12.5%, 35% and 8.3%, respectively, against the best score computed using individual similarity. In the second experiment, the proposed method produced a perfect positive Spearman rank correlation score of 1.00 in the ranking task and a pairwise Pearson correlation score of 0.92 in the rating task. The test of significance conducted on both scores rejected the null hypotheses of the experiment and showed that both scores correlated well with collective human judgment. The combined overall assessment could add value to existing support systems and be beneficial for both trademark examiners and trademark applicants. The method could be further used in addressing recent cyberspace phenomena related to trademark infringement such as customer hijacking and cybersquatting. Keywords—Trademark assessment, trademark infringement, trademark retrieval, degree of similarity, fuzzy aggregation, semantic similarity, phonetic similarity, visual similarity

    Semantic retrieval of trademarks based on conceptual similarity

    Get PDF
    Trademarks are signs of high reputational value. Thus, they require protection. This paper studies conceptual similarities between trademarks, which occurs when two or more trademarks evoke identical or analogous semantic content. This paper advances the state-of-the-art by proposing a computational approach based on semantics that can be used to compare trademarks for conceptual similarity. A trademark retrieval algorithm is developed that employs natural language processing techniques and an external knowledge source in the form of a lexical ontology. The search and indexing technique developed uses similarity distance, which is derived using Tversky's theory of similarity. The proposed retrieval algorithm is validated using two resources: a trademark database of 1400 disputed cases and a database of 378,943 company names. The accuracy of the algorithm is estimated using measures from two different domains: the R-precision score, which is commonly used in information retrieval and human judgment/collective human opinion, which is used in human-machine systems

    Scale-Euclidean invariant object retrieval

    Get PDF

    Scale-Euclidean invariant object retrieval

    Get PDF
    • …
    corecore