23,550 research outputs found
Ensemble tractography
Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; JapónFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Wandell, Brian A.. University of Stanford; Estados UnidosFil: Pestilli, Franco. Indiana University; Estados Unido
Corticospinal Tract (CST) reconstruction based on fiber orientation distributions(FODs) tractography
The Corticospinal Tract (CST) is a part of pyramidal tract (PT), and it can
innervate the voluntary movement of skeletal muscle through spinal interneurons
(the 4th layer of the Rexed gray board layers), and anterior horn motorneurons
(which control trunk and proximal limb muscles). Spinal cord injury (SCI) is a
highly disabling disease often caused by traffic accidents. The recovery of CST
and the functional reconstruction of spinal anterior horn motor neurons play an
essential role in the treatment of SCI. However, the localization and
reconstruction of CST are still challenging issues; the accuracy of the
geometric reconstruction can directly affect the results of the surgery. The
main contribution of this paper is the reconstruction of the CST based on the
fiber orientation distributions (FODs) tractography. Differing from
tensor-based tractography in which the primary direction is a determined
orientation, the direction of FODs tractography is determined by the
probability. The spherical harmonics (SPHARM) can be used to approximate the
efficiency of FODs tractography. We manually delineate the three ROIs (the
posterior limb of the internal capsule, the cerebral peduncle, and the anterior
pontine area) by the ITK-SNAP software, and use the pipeline software to
reconstruct both the left and right sides of the CST fibers. Our results
demonstrate that FOD-based tractography can show more and correct anatomical
CST fiber bundles
Vessel tractography using an intensity based tensor model with branch detection
In this paper, we present a tubular structure seg- mentation method that utilizes a second order tensor constructed from directional intensity measurements, which is inspired from diffusion tensor image (DTI) modeling. The constructed anisotropic tensor which is fit inside a vessel drives the segmen- tation analogously to a tractography approach in DTI. Our model is initialized at a single seed point and is capable of capturing whole vessel trees by an automatic branch detection algorithm developed in the same framework. The centerline of the vessel as well as its thickness is extracted. Performance results within the Rotterdam Coronary Artery Algorithm Evaluation framework are provided for comparison with existing techniques. 96.4% average overlap with ground truth delineated by experts is obtained in addition to other measures reported in the paper. Moreover, we demonstrate further quantitative results over synthetic vascular datasets, and we provide quantitative experiments for branch detection on patient Computed Tomography Angiography (CTA) volumes, as well as qualitative evaluations on the same CTA datasets, from visual scores by a cardiologist expert
White matter differences between healthy young ApoE4 carriers and non-carriers identified with tractography and support vector machines.
The apolipoprotein E4 (ApoE4) is an established risk factor for Alzheimer's disease (AD). Previous work has shown that this allele is associated with functional (fMRI) changes as well structural grey matter (GM) changes in healthy young, middle-aged and older subjects. Here, we assess the diffusion characteristics and the white matter (WM) tracts of healthy young (20-38 years) ApoE4 carriers and non-carriers. No significant differences in diffusion indices were found between young carriers (ApoE4+) and non-carriers (ApoE4-). There were also no significant differences between the groups in terms of normalised GM or WM volume. A feature selection algorithm (ReliefF) was used to select the most salient voxels from the diffusion data for subsequent classification with support vector machines (SVMs). SVMs were capable of classifying ApoE4 carrier and non-carrier groups with an extremely high level of accuracy. The top 500 voxels selected by ReliefF were then used as seeds for tractography which identified a WM network that included regions of the parietal lobe, the cingulum bundle and the dorsolateral frontal lobe. There was a non-significant decrease in volume of this WM network in the ApoE4 carrier group. Our results indicate that there are subtle WM differences between healthy young ApoE4 carriers and non-carriers and that the WM network identified may be particularly vulnerable to further degeneration in ApoE4 carriers as they enter middle and old age
An error analysis of probabilistic fibre tracking methods: average curves optimization
Fibre tractography using diffusion tensor imaging is a promising method for estimating the pathways of white matter tracts in the human brain. The success of fibre tracking methods ultimately depends upon the accuracy of the fibre tracking algorithms and the quality of the data. Uncertainty and its representation have an important role to play in fibre tractography methods to infer useful information from real world noisy diffusion weighted data. Probabilistic fibre tracking approaches have received considerable interest recently for resolving orientational uncertainties. In this study, an average curves approach was used to investigate the impact of SNR and tensor field geometry on the accuracy of three different types of probabilistic tracking algorithms. The accuracy was assessed using simulated data and a range of tract geometries. The average curves representations were employed to represent the optimal fibre path of probabilistic tracking curves. The results are compared with streamline tracking on both simulated and in vivo data
Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography
Anterior temporal lobe resection is often complicated by superior quadrantic visual field deficits (VFDs). In some cases this can be severe enough to prohibit driving, even if a patient is free of seizures. These deficits are caused by damage to Meyer's loop of the optic radiation, which shows considerable heterogeneity in its anterior extent. This structure cannot be distinguished using clinical magnetic resonance imaging sequences. Diffusion tensor tractography is an advanced magnetic resonance imaging technique that enables the parcellation of white matter. Using seed voxels antero-lateral to the lateral geniculate nucleus, we applied this technique to 20 control subjects, and 21 postoperative patients. All patients had visual fields assessed with Goldmann perimetry at least three months after surgery. We measured the distance from the tip of Meyer's loop to the temporal pole and horn in all subjects. In addition, we measured the size of temporal lobe resection using postoperative T1-weighted images, and quantified VFDs. Nine patients suffered VFDs ranging from 22% to 87% of the contralateral superior quadrant. In patients, the range of distance from the tip of Meyer's loop to the temporal pole was 24–43 mm (mean 34 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –15 to +9 mm (mean 0 mm). In controls the range of distance from the tip of Meyer's loop to the temporal pole was 24–47 mm (mean 35 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –11 to +9 mm (mean 0 mm). Both quantitative and qualitative results were in accord with recent dissections of cadaveric brains, and analysis of postoperative VFDs and resection volumes. By applying a linear regression analysis we showed that both distance from the tip of Meyer's loop to the temporal pole and the size of resection were significant predictors of the postoperative VFDs. We conclude that there is considerable variation in the anterior extent of Meyer's loop. In view of this, diffusion tensor tractography of the optic radiation is a potentially useful method to assess an individual patient's risk of postoperative VFDs following anterior temporal lobe resection
- …
