10,443 research outputs found

    Behavioral game theory: Plausible formal models that predict accurately

    Get PDF
    Many weaknesses of game theory are cured by new models that embody simple cognitive principles, while maintaining the formalism and generality that makes game theory useful. Social preference models can generate team reasoning by combining reciprocation and correlated equilibrium. Models of limited iterated thinking explain data better than equilibrium models do; and they self-repair problems of implausibility and multiplicity of equilibria

    Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment

    Get PDF
    Imperfect measurement of uncertainty (deeper uncertainty) in climate sensitivity is introduced in a two-sectoral integrated assessment model (IAM) with endogenous growth, based on an extension of DICE. The household expresses ambiguity aversion and can use robust control via a `shadow ambiguity premium' on social carbon cost to identify robust climate policy feedback rules that work well over a range such as the IPCC climate sensitivity range (IPCC, 2007a). Ambiguity aversion, in combination with linear damage, increases carbon cost in a similar way as a low pure rate of time preference. However, ambiguity aversion in combination with non-linear damage would also make policy more responsive to changes in climate data observations. Perfect ambiguity aversion results in an infinite expected shadow carbon cost and a zero carbon consumption path. Dynamic programming identifies an analytically tractable solution to the IAM.climate policy, carbon cost, robust control, Knightian uncertainty, ambiguity aversion, integrated asssessment

    An efficient and versatile approach to trust and reputation using hierarchical Bayesian modelling

    No full text
    In many dynamic open systems, autonomous agents must interact with one another to achieve their goals. Such agents may be self-interested and, when trusted to perform an action, may betray that trust by not performing the action as required. Due to the scale and dynamism of these systems, agents will often need to interact with other agents with which they have little or no past experience. Each agent must therefore be capable of assessing and identifying reliable interaction partners, even if it has no personal experience with them. To this end, we present HABIT, a Hierarchical And Bayesian Inferred Trust model for assessing how much an agent should trust its peers based on direct and third party information. This model is robust in environments in which third party information is malicious, noisy, or otherwise inaccurate. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based exclusively on principled statistical techniques: it can cope with multiple discrete or continuous aspects of trustee behaviour; it does not restrict agents to using a single shared representation of behaviour; it can improve assessment by using any observed correlation between the behaviour of similar trustees or information sources; and it provides a pragmatic solution to the whitewasher problem (in which unreliable agents assume a new identity to avoid bad reputation). In this paper, we describe the theoretical aspects of HABIT, and present experimental results that demonstrate its ability to predict agent behaviour in both a simulated environment, and one based on data from a real-world webserver domain. In particular, these experiments show that HABIT can predict trustee performance based on multiple representations of behaviour, and is up to twice as accurate as BLADE, an existing state-of-the-art trust model that is both statistically principled and has been previously shown to outperform a number of other probabilistic trust models

    Optimising ITS behaviour with Bayesian networks and decision theory

    Get PDF
    We propose and demonstrate a methodology for building tractable normative intelligent tutoring systems (ITSs). A normative ITS uses a Bayesian network for long-term student modelling and decision theory to select the next tutorial action. Because normative theories are a general framework for rational behaviour, they can be used to both define and apply learning theories in a rational, and therefore optimal, way. This contrasts to the more traditional approach of using an ad-hoc scheme to implement the learning theory. A key step of the methodology is the induction and the continual adaptation of the Bayesian network student model from student performance data, a step that is distinct from other recent Bayesian net approaches in which the network structure and probabilities are either chosen beforehand by an expert, or by efficiency considerations. The methodology is demonstrated by a description and evaluation of CAPIT, a normative constraint-based tutor for English capitalisation and punctuation. Our evaluation results show that a class using the full normative version of CAPIT learned the domain rules at a faster rate than the class that used a non-normative version of the same system
    corecore