181 research outputs found

    Clearing the Rf Smog: Making 802.11 Robust to Cross-Technology Interference

    Get PDF
    Recent studies show that high-power cross-technology interference is becoming a major problem in today’s 802.11 networks. Devices like baby monitors and cordless phones can cause a wireless LAN to lose connectivity. The existing approach for dealing with such high-power interferers makes the 802.11 network switch to a different channel; yet the ISM band is becoming increasingly crowded with diverse technologies, and hence many 802.11 access points may not find an interference-free channel. This paper presents TIMO, a MIMO design that enables 802.11n to communicate in the presence of high-power cross-technology interference. Unlike existing MIMO designs, however, which require all concurrent transmissions to belong to the same technology, TIMO can exploit MIMO capabilities to decode in the presence of a signal from a different technology, hence enabling diverse technologies to share the same frequency band. We implement a prototype of TIMO in GNURadio-USRP2 and show that it enables 802.11n to communicate in the presence of interference from baby monitors, cordless phones, and microwave ovens, transforming scenarios with a complete loss of connectivity to operational networks.National Science Foundation (U.S.) (NSF grant CNS-0831660)National Science Foundation (U.S.) (NSF grant CNS- 0721857)United States. Defense Advanced Research Projects Agency (DARPA ITMANET

    Radar Interference Mitigation for Automated Driving: Exploring Proactive Strategies

    Get PDF
    Autonomous driving relies on a variety of sensors, especially on radars, which have unique robustness under heavy rain/fog/snow and poor light conditions. With the rapid increase of the amount of radars used on modern vehicles, where most radars operate in the same frequency band, the risk of radar interference becomes a compelling issue. This article analyses automotive radar interference and proposes several new approaches, which combine industrial and academic expertise, toward the path of interference-free autonomous driving

    Multi-band OFDM UWB receiver with narrowband interference suppression

    Get PDF
    A multi band orthogonal frequency division multiplexing (MB-OFDM) compatible ultra wideband (UWB) receiver with narrowband interference (NBI) suppression capability is presented. The average transmit power of UWB system is limited to -41.3 dBm/MHz in order to not interfere existing narrowband systems. Moreover, it must operate even in the presence of unintentional radiation of FCC Class-B compatible devices. If this unintentional radiation resides in the UWB band, it can jam the communication. Since removing the interference in digital domain requires higher dynamic range of analog front-end than removing it in analog domain, a programmable analog notch filter is used to relax the receiver requirements in the presence of NBI. The baseband filter is placed before the variable gain amplifier (VGA) in order to reduce the signal swing at the VGA input. The frequency hopping period of MB-OFDM puts a lower limit on the settling time of the filter, which is inverse proportional to notch bandwidth. However, notch bandwidth should be low enough not to attenuate the adjacent OFDM tones. Since these requirements are contradictory, optimization is needed to maximize overall performance. Two different NBI suppression schemes are tested. In the first scheme, the notch filter is operating for all sub-bands. In the second scheme, the notch filter is turned on during the sub-band affected by NBI. Simulation results indicate that the UWB system with the first and the second suppression schemes can handle up to 6 dB and 14 dB more NBI power, respectively. The results of this work are not limited to MB-OFDM UWB system, and can be applied to other frequency hopping systems

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF

    Facilitating wireless coexistence research

    Get PDF
    • …
    corecore