3,458 research outputs found

    kPAM 2.0: Feedback Control for Category-Level Robotic Manipulation

    Full text link
    In this paper, we explore generalizable, perception-to-action robotic manipulation for precise, contact-rich tasks. In particular, we contribute a framework for closed-loop robotic manipulation that automatically handles a category of objects, despite potentially unseen object instances and significant intra-category variations in shape, size and appearance. Previous approaches typically build a feedback loop on top of a real-time 6-DOF pose estimator. However, representing an object with a parameterized transformation from a fixed geometric template does not capture large intra-category shape variation. Hence we adopt the keypoint-based object representation proposed in kPAM for category-level pick-and-place, and extend it to closed-loop manipulation policies with contact-rich tasks. We first augment keypoints with local orientation information. Using the oriented keypoints, we propose a novel object-centric action representation in terms of regulating the linear/angular velocity or force/torque of these oriented keypoints. This formulation is surprisingly versatile -- we demonstrate that it can accomplish contact-rich manipulation tasks that require precision and dexterity for a category of objects with different shapes, sizes and appearances, such as peg-hole insertion for pegs and holes with significant shape variation and tight clearance. With the proposed object and action representation, our framework is also agnostic to the robot grasp pose and initial object configuration, making it flexible for integration and deployment.Comment: IEEE Robotics and Automation Letter. The video demo is on https://sites.google.com/view/kpam2

    Deep Drone Racing: From Simulation to Reality with Domain Randomization

    Full text link
    Dynamically changing environments, unreliable state estimation, and operation under severe resource constraints are fundamental challenges that limit the deployment of small autonomous drones. We address these challenges in the context of autonomous, vision-based drone racing in dynamic environments. A racing drone must traverse a track with possibly moving gates at high speed. We enable this functionality by combining the performance of a state-of-the-art planning and control system with the perceptual awareness of a convolutional neural network (CNN). The resulting modular system is both platform- and domain-independent: it is trained in simulation and deployed on a physical quadrotor without any fine-tuning. The abundance of simulated data, generated via domain randomization, makes our system robust to changes of illumination and gate appearance. To the best of our knowledge, our approach is the first to demonstrate zero-shot sim-to-real transfer on the task of agile drone flight. We extensively test the precision and robustness of our system, both in simulation and on a physical platform, and show significant improvements over the state of the art.Comment: Accepted as a Regular Paper to the IEEE Transactions on Robotics Journal. arXiv admin note: substantial text overlap with arXiv:1806.0854
    • …
    corecore