1 research outputs found

    Tracking analysis of minimum kernel risk-sensitive loss algorithm under general non-Gaussian noise

    Get PDF
    In this paper the steady-state tracking performance of minimum kernel risk-sensitive loss (MKRSL) in a non-stationary environment is analyzed. In order to model a non-stationary environment, a first-order random-walk model is used to describe the variations of optimum weight vector over time. Moreover, the measurement noise is considered to have non-Gaussian distribution. The energy conservation relation is utilized to extract an approximate closed-form expression for the steady-state excess mean square error (EMSE). Our analysis shows that unlike for the stationary case, the EMSE curve is not an increasing function of step-size parameter. Hence, the optimum step-size which minimizes the EMSE is derived. We also discuss that our approach can be used to extract steady-state EMSE for a general class of adaptive filters. The simulation results with different noise distributions support the theoretical derivations
    corecore