172,241 research outputs found
Holographic flow visualization
Holographic visualization techniques are presented of the vortex wake of a lifting wing. The motions of tracer particles in vortical flows are described along with the development of a liquid-drop tracer generator. An analysis is presented of the motion of particles of arbitrary density and size in solid body and potential vortex flows
A Dye-Tracer Technique for Experimentally Obtaining Impingement Characteristics of Arbitrary Bodies and a Method for Determining Droplet Size Distribution
A dye-tracer technique has been developed whereby the quantity of dyed water collected on a blotter-wrapped body exposed to an air stream containing a dyed-water spray cloud can be colorimetrically determined in order to obtain local collection efficiencies, total collection efficiency, and rearward extent of impingement on the body. In addition, a method has been developed whereby the impingement characteristics obtained experimentally for a body can be related to theoretical impingement data for the same body in order to determine the droplet size distribution of the impinging cloud. Several cylinders, a ribbon, and an aspirating device to measure cloud liquid-water content were used in the studies presented herein for the purpose of evaluating the dye-tracer technique. Although the experimental techniques used in the dye-tracer technique require careful control, the methods presented herein should be applicable for any wind tunnel provided the humidity of the air stream can be maintained near saturation
A few modeling and rendering techniques for computer graphics and their implementation on ultra hardware
Ultra network is a recently installed very high speed graphic hardware at NASA Langley Research Center. The Ultra Network interfaced to Voyager through its HSX channel is capable of transmitting up to 800 million bits of information per second. It is capable of displaying fifteen to twenty frames of precomputed images of size 1024 x 2368 with 24 bits of color information per pixel per second. Modeling and rendering techniques are being developed in computer graphics and implemented on Ultra hardware. A ray tracer is being developed for use at the Flight Software and Graphic branch. Changes were made to make the ray tracer compatible with Voyager
Investigation of cloud/water vapor motion winds from geostationary satellite
Work has been primarily focussed on three tasks: (1) comparison of wind fields produced at MSFC with the CO2 autowind/autoeditor system newly installed in NESDIS operations; (2) evaluation of techniques for improved tracer selection through use of cloud classification predictors; and (3) development of height assignment algorithm with water vapor channel radiances. The contract goal is to improve the CIMSS wind system by developing new techniques and assimilating better existing techniques. The work reported here was done in collaboration with the NESDIS scientists working on the operational winds software, so that NASA funded research can benefit NESDIS operational algorithms
Advanced techniques for determining long term compatibility of materials with propellants
A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented
Dissimilar bouncy walkers
We consider the dynamics of a one-dimensional system consisting of dissimilar
hardcore interacting (bouncy) random walkers. The walkers' (diffusing
particles') friction constants xi_n, where n labels different bouncy walkers,
are drawn from a distribution rho(xi_n). We provide an approximate analytic
solution to this recent single-file problem by combining harmonization and
effective medium techniques. Two classes of systems are identified: when
rho(xi_n) is heavy-tailed, rho(xi_n)=A xi_n^(-1-\alpha) (0<alpha<1) for large
xi_n, we identify a new universality class in which density relaxations,
characterized by the dynamic structure factor S(Q,t), follows a Mittag-Leffler
relaxation, and the the mean square displacement of a tracer particle (MSD)
grows as t^delta with time t, where delta=alpha/(1+\alpha). If instead rho is
light-tailedsuch that the mean friction constant exist, S(Q,t) decays
exponentially and the MSD scales as t^(1/2). We also derive tracer particle
force response relations. All results are corroborated by simulations and
explained in a simplified model.Comment: 11 pages, to appear in Journal of Chemical Physic
Recommended from our members
Principles and calibration of solid phase microextraction fibre (passive sampler) for measurements of airflow and air infiltration in dwellings
Tracer gas techniques have been the most appropriate experimental method of determining airflows and ventilation rates in houses. However, current trends to reduce greenhouse gas effects have prompted the need for alternative techniques, such as passive sampling. In this research passive sampling techniques have been used to demonstrate the potential to fulfil these requirements by using solutions of volatile organic compounds (VOCs) and solid phase microextraction (SPME) fibres. These passive sampling techniques have been calibrated against tracer gas decay techniques and measurements from a standard orifice plate. Two constant sources of volatile organic compounds were diffused into two sections of a humidity chamber and sampled using SPME fibres. From a total of four SPME fibres (two in each section), reproducible results were obtained. Emission rates and air movement from one section to the other were predicted using developed algorithms. Comparison of the SPME fibre technique with that of the tracer gas technique and measurements from an orifice plate showed similar results with good precision and accuracy. With these fibres, infiltration rates can be measured over grab samples in a time weighted averaged period lasting from 10 minutes up to several days.
Key words: passive samplers, solid phase microextraction fibre, tracer gas techniques, airflow, air infiltration, houses
Combined pyrolysis and radiochemical gas chromatography for studying the thermal degradation of polymers
Pyrolysis gas chromatography and radioactive tracer techniques have
been used independently to study the thermal degradation of polymers. In
these laboratories the two techniques have been combined to elucidate
some of the mechanisms of the thermal degradation of epoxy resins and
polyimides. This paper describes the apparatus developed for this work
Nuclear medicine: investigation of renal function in small animal medicine
Kidney function investigations in veterinary medicine are traditionally based on blood analysis (blood urea nitrogen (BUN) and serum creatinine concentration) and / or urinalysis (urine specific gravity, protein-to-creatinine ratio or fractional excretion). Morphologic information is usually obtained by abdominal radiography or ultrasonography. However, when more specific information on the functionality of the kidneys is needed, nuclear medicine offers various tracers that specifically represent glomerular filtration rate, effective renal plasma flow or functional renal mass, sometimes combining functional and morphologic data. These procedures can be based on blood sampling techniques (non-imaging methods), or data can be obtained using a gamma-camera (imaging methods). The most commonly used radionuclides for the examination of kidney function in small animal medicine are discussed in this review
Image analysis procedure for studying Back-Diffusion phenomena from low-permeability layers in laboratory tests
In this study, the long-term tailing derived from the storage process of contaminants in low-permeability zones is investigated. The release from these areas in the groundwater can be considered a long-term source that often undermines remediation efforts. An Image Analysis technique is used to analyze the process and evaluate the concentrations of a tracer at different points of the test section. Furthermore, the diffusive flux from the low-permeability lenses is determined. To validate the proposed technique, the results are compared with samples, and the diffusive fluxes resulting from the low-permeability zones of the reconstructed aquifer are compared with a theoretical approach
- …
