427 research outputs found

    A General Framework for Sound and Complete Floyd-Hoare Logics

    Full text link
    This paper presents an abstraction of Hoare logic to traced symmetric monoidal categories, a very general framework for the theory of systems. Our abstraction is based on a traced monoidal functor from an arbitrary traced monoidal category into the category of pre-orders and monotone relations. We give several examples of how our theory generalises usual Hoare logics (partial correctness of while programs, partial correctness of pointer programs), and provide some case studies on how it can be used to develop new Hoare logics (run-time analysis of while programs and stream circuits).Comment: 27 page

    Turing Automata and Graph Machines

    Full text link
    Indexed monoidal algebras are introduced as an equivalent structure for self-dual compact closed categories, and a coherence theorem is proved for the category of such algebras. Turing automata and Turing graph machines are defined by generalizing the classical Turing machine concept, so that the collection of such machines becomes an indexed monoidal algebra. On the analogy of the von Neumann data-flow computer architecture, Turing graph machines are proposed as potentially reversible low-level universal computational devices, and a truly reversible molecular size hardware model is presented as an example

    Open Graphs and Monoidal Theories

    Full text link
    String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. The distinguishing feature of these diagrams is that edges need not be connected to vertices at both ends, and these unconnected ends can be interpreted as the inputs and outputs of a diagram. In this paper, we give a concrete construction for string diagrams using a special kind of typed graph called an open-graph. While the category of open-graphs is not itself adhesive, we introduce the notion of a selective adhesive functor, and show that such a functor embeds the category of open-graphs into the ambient adhesive category of typed graphs. Using this functor, the category of open-graphs inherits "enough adhesivity" from the category of typed graphs to perform double-pushout (DPO) graph rewriting. A salient feature of our theory is that it ensures rewrite systems are "type-safe" in the sense that rewriting respects the inputs and outputs. This formalism lets us safely encode the interesting structure of a computational model, such as evaluation dynamics, with succinct, explicit rewrite rules, while the graphical representation absorbs many of the tedious details. Although topological formalisms exist for string diagrams, our construction is discreet, finitary, and enjoys decidable algorithms for composition and rewriting. We also show how open-graphs can be parametrised by graphical signatures, similar to the monoidal signatures of Joyal and Street, which define types for vertices in the diagrammatic language and constraints on how they can be connected. Using typed open-graphs, we can construct free symmetric monoidal categories, PROPs, and more general monoidal theories. Thus open-graphs give us a handle for mechanised reasoning in monoidal categories.Comment: 31 pages, currently technical report, submitted to MSCS, waiting review

    An embedding theorem for Hilbert categories

    Get PDF
    We axiomatically define (pre-)Hilbert categories. The axioms resemble those for monoidal Abelian categories with the addition of an involutive functor. We then prove embedding theorems: any locally small pre-Hilbert category whose monoidal unit is a simple generator embeds (weakly) monoidally into the category of pre-Hilbert spaces and adjointable maps, preserving adjoint morphisms and all finite (co)limits. An intermediate result that is important in its own right is that the scalars in such a category necessarily form an involutive field. In case of a Hilbert category, the embedding extends to the category of Hilbert spaces and continuous linear maps. The axioms for (pre-)Hilbert categories are weaker than the axioms found in other approaches to axiomatizing 2-Hilbert spaces. Neither enrichment nor a complex base field is presupposed. A comparison to other approaches will be made in the introduction.Comment: 24 page

    Semantics for a Quantum Programming Language by Operator Algebras

    Get PDF
    This paper presents a novel semantics for a quantum programming language by operator algebras, which are known to give a formulation for quantum theory that is alternative to the one by Hilbert spaces. We show that the opposite category of the category of W*-algebras and normal completely positive subunital maps is an elementary quantum flow chart category in the sense of Selinger. As a consequence, it gives a denotational semantics for Selinger's first-order functional quantum programming language QPL. The use of operator algebras allows us to accommodate infinite structures and to handle classical and quantum computations in a unified way.Comment: In Proceedings QPL 2014, arXiv:1412.810
    corecore