3 research outputs found

    A Superficial Analysis Approach for Identifying Malicious Domain Names Generated by DGA Malware

    Get PDF
    Some of the most serious security threats facing computer networks involve malware. To prevent malware-related damage, administrators must swiftly identify and remove the infected machines that may reside in their networks. However, many malware families have domain generation algorithms (DGAs) to avoid detection. A DGA is a technique in which the domain name is changed frequently to hide the callback communication from the infected machine to the command-and-control server. In this article, we propose an approach for estimating the randomness of domain names by superficially analyzing their character strings. This approach is based on the following observations: human-generated benign domain names tend to reflect the intent of their domain registrants, such as an organization, product, or content. In contrast, dynamically generated malicious domain names consist of meaningless character strings because conflicts with already registered domain names must be avoided; hence, there are discernible differences in the strings of dynamically generated and human-generated domain names. Notably, our approach does not require any prior knowledge about DGAs. Our evaluation indicates that the proposed approach is capable of achieving recall and precision as high as 0.9960 and 0.9029, respectively, when used with labeled datasets. Additionally, this approach has proven to be highly effective for datasets collected via a campus network. Thus, these results suggest that malware-infected machines can be swiftly identified and removed from networks using DNS queries for detected malicious domains as triggers

    Game-Theoretic Foundations for Forming Trusted Coalitions of Multi-Cloud Services in the Presence of Active and Passive Attacks

    Get PDF
    The prominence of cloud computing as a common paradigm for offering Web-based services has led to an unprecedented proliferation in the number of services that are deployed in cloud data centers. In parallel, services' communities and cloud federations have gained an increasing interest in the recent past years due to their ability to facilitate the discovery, composition, and resource scaling issues in large-scale services' markets. The problem is that the existing community and federation formation solutions deal with services as traditional software systems and overlook the fact that these services are often being offered as part of the cloud computing technology, which poses additional challenges at the architectural, business, and security levels. The motivation of this thesis stems from four main observations/research gaps that we have drawn through our literature reviews and/or experiments, which are: (1) leading cloud services such as Google and Amazon do not have incentives to group themselves into communities/federations using the existing community/federation formation solutions; (2) it is quite difficult to find a central entity that can manage the community/federation formation process in a multi-cloud environment; (3) if we allow services to rationally select their communities/federations without considering their trust relationships, these services might have incentives to structure themselves into communities/federations consisting of a large number of malicious services; and (4) the existing intrusion detection solutions in the domain of cloud computing are still ineffective in capturing advanced multi-type distributed attacks initiated by communities/federations of attackers since they overlook the attacker's strategies in their design and ignore the cloud system's resource constraints. This thesis aims to address these gaps by (1) proposing a business-oriented community formation model that accounts for the business potential of the services in the formation process to motivate the participation of services of all business capabilities, (2) introducing an inter-cloud trust framework that allows services deployed in one or disparate cloud centers to build credible trust relationships toward each other, while overcoming the collusion attacks that occur to mislead trust results even in extreme cases wherein attackers form the majority, (3) designing a trust-based game theoretical model that enables services to distributively form trustworthy multi-cloud communities wherein the number of malicious services is minimal, (4) proposing an intra-cloud trust framework that allows the cloud system to build credible trust relationships toward the guest Virtual Machines (VMs) running cloud-based services using objective and subjective trust sources, (5) designing and solving a trust-based maxmin game theoretical model that allows the cloud system to optimally distribute the detection load among VMs within a limited budget of resources, while considering Distributed Denial of Service (DDoS) attacks as a practical scenario, and (6) putting forward a resource-aware comprehensive detection and prevention system that is able to capture and prevent advanced simultaneous multi-type attacks within a limited amount of resources. We conclude the thesis by uncovering some persisting research gaps that need further study and investigation in the future
    corecore