7,839 research outputs found

    Towards the Evolution of Novel Vertical-Axis Wind Turbines

    Full text link
    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency, resulting in an important cost reduction. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.Comment: 14 pages, 11 figure

    Numerical Investigations on the Effect of Blade Angles of a Vertical Axis Wind Turbine on its Performance Output

    Get PDF
    There are many social, political and environmental issues associated with the use of fossil fuels. For this reason, there are numerous investigations currently being carried out to develop newer and renewable sources of energy to alleviate energy demand. Wind is one source of energy that can be harnessed using wind turbines. In this study, numerical investigations using Computational Fluid Dynamics (CFD) solver have been carried out to determine the optimum blade angles of a wind turbine used in urban environment. The effect of these blade angles have been considered to be within the normal operating range (α from 1.689⁰ to 21.689⁰, ϒ from 18.2⁰ to 38.2⁰ and δ from 22.357⁰ to 42.357⁰) while β was kept constant at 90⁰ due to design requirements. The results show that as α increases average torque output increases to a certain point after which it remains constant. On the contrary, as ϒ and δ increase, average torque output decreases. From the results, it can be concluded that the ideal blade angles, for optimal torque output, are α=11.689⁰, ϒ=18.2⁰ and δ=22.357⁰

    Effect of blade geometry on the aerodynamic loads produced by vertical-axis wind turbines

    Get PDF
    Accurate aerodynamic modelling of vertical-axis wind turbines poses a significant challenge. The rotation of the turbine induces large variations in the angle of attack of its blades that can manifest as dynamic stall. In addition, interactions between the blades of the turbine and the wake that they produce can result in impulsive changes to the aerodynamic loading. The Vorticity Transport Model has been used to simulate the aerodynamic performance and wake dynamics of three different vertical-axis wind turbine configurations. It is known that vertical-axis turbines with either straight or curved blades deliver torque to their shaft that fluctuates at the blade passage frequency of the rotor. In contrast, a turbine with helically twisted blades delivers a relatively steady torque to the shaft. In this article, the interactions between helically twisted blades and the vortices within their wake are shown to result in localized perturbations to the aerodynamic loading on the rotor that can disrupt the otherwise relatively smooth power output that is predicted by simplistic aerodynamic tools that do not model the wake to sufficient fidelity. Furthermore, vertical-axis wind turbines with curved blades are shown to be somewhat more susceptible to local dynamic stall than turbines with straight blades

    Output characteristics of tidal current power stations

    Get PDF
    With increasing targets being set for renewable-derived electricity generation, wind power is currently the preferred technology. It is widely accepted that due to the stochastic nature of wind, there is an upper limit to the capacity that can be accommodated within the electricity network before power quality is impeded. This paper demonstrates the potential of tidal energy as a predictable renewable technologies that can be developed for base load power generation and thus minimise the risk of compromising future power quality

    Tracking control with adaption of kites

    Full text link
    A novel tracking paradigm for flying geometric trajectories using tethered kites is presented. It is shown how the differential-geometric notion of turning angle can be used as a one-dimensional representation of the kite trajectory, and how this leads to a single-input single-output (SISO) tracking problem. Based on this principle a Lyapunov-based nonlinear adaptive controller is developed that only needs control derivatives of the kite aerodynamic model. The resulting controller is validated using simulations with a point-mass kite model.Comment: 20 pages, 12 figure
    • …
    corecore