4 research outputs found

    Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization

    Get PDF
    Non-invasive brain stimulation, such as transcranial alternating current stimulation (tACS) provides a powerful tool to directly modulate brain oscillations that mediate complex cognitive processes. While the body of evidence about the effect of tACS on behavioral and cognitive performance is constantly growing, those studies fail to address the importance of subjectspecific stimulation protocols. With this study here, we set the foundation to combine tACS with a recently presented framework that utilizes real-time fRMI and Bayesian optimization in order to identify the most optimal tACS protocol for a given individual. While Bayesian optimization is particularly relevant to such a scenario, its success depends on two fundamental choices: the choice of covariance kernel for the Gaussian process prior as well as the choice of acquisition function that guides the search. Using empirical (functional neuroimaging) as well as simulation data, we identified the squared exponential kernel and the upper confidence bound acquisition function to work best for our problem. These results will be used to inform our upcoming realtime experiments

    Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization

    Full text link
    We aimed to evaluate computer-aided diagnosis (CADx) system for lung nodule classification focusing on (i) usefulness of gradient tree boosting (XGBoost) and (ii) effectiveness of parameter optimization using Bayesian optimization (Tree Parzen Estimator, TPE) and random search. 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of local binary pattern was used for calculating feature vectors. Support vector machine (SVM) or XGBoost was trained using the feature vectors and their labels. TPE or random search was used for parameter optimization of SVM and XGBoost. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost were 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. In conclusion, XGBoost was better than SVM for classifying lung nodules. TPE was more efficient than random search for parameter optimization.Comment: 29 pages, 4 figure

    Decoding Time-Varying Functional Connectivity Networks via Linear Graph Embedding Methods

    Get PDF
    An exciting avenue of neuroscientific research involves quantifying the time-varying properties of functional connectivity networks. As a result, many methods have been proposed to estimate the dynamic properties of such networks. However, one of the challenges associated with such methods involves the interpretation and visualization of high-dimensional, dynamic networks. In this work, we employ graph embedding algorithms to provide low-dimensional vector representations of networks, thus facilitating traditional objectives such as visualization, interpretation and classification. We focus on linear graph embedding methods based on principal component analysis and regularized linear discriminant analysis. The proposed graph embedding methods are validated through a series of simulations and applied to fMRI data from the Human Connectome Project

    Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization

    Get PDF
    Non-invasive brain stimulation, such as transcranial alternating current stimulation (tACS) provides a powerful tool to directly modulate brain oscillations that mediate complex cognitive processes. While the body of evidence about the effect of tACS on behavioral and cognitive performance is constantly growing, those studies fail to address the importance of subject-specific stimulation protocols. With this study here, we set the foundation to combine tACS with a recently presented framework that utilizes real-time fRMI and Bayesian optimization in order to identify the most optimal tACS protocol for a given individual. While Bayesian optimization is particularly relevant to such a scenario, its success depends on two fundamental choices: the choice of covariance kernel for the Gaussian process prior as well as the choice of acquisition function that guides the search. Using empirical (functional neuroimaging) as well as simulation data, we identified the squared exponential kernel and the upper confidence bound acquisition function to work best for our problem. These results will be used to inform our upcoming real-time experiments
    corecore