7 research outputs found

    Poster: Towards safe refactoring for intelligent parallelization of Java 8 streams

    Full text link
    The Java 8 Stream API sets forth a promising new programming model that incorporates functional-like, MapReduce-style features into a mainstream programming language. However, using streams correctly and efficiently may involve subtle considerations. In this poster, we present our ongoing work and preliminary results towards an automated refactoring approach that assists developers in writing optimal stream code. The approach, based on ordering and typestate analysis, determines when it is safe and advantageous to convert streams to parallel and optimize a parallel streams

    Poster: Towards safe refactoring for intelligent parallelization of Java 8 streams

    Full text link
    The Java 8 Stream API sets forth a promising new programming model that incorporates functional-like, MapReduce-style features into a mainstream programming language. However, using streams correctly and efficiently may involve subtle considerations. In this poster, we present our ongoing work and preliminary results to- wards an automated refactoring approach that assists developers in writing optimal stream code. The approach, based on ordering and typestate analysis, determines when it is safe and advantageous to convert streams to parallel and optimize a parallel streams

    A Tool for Optimizing Java 8 Stream Software via Automated Refactoring

    Full text link
    Streaming APIs are pervasive in mainstream Object-Oriented languages. For example, the Java 8 Stream API allows for functional-like, MapReduce-style operations in processing both finite and infinite data structures. However, using this API efficiently involves subtle considerations like determining when it is best for stream operations to run in parallel, when running operations in parallel can be less efficient, and when it is safe to run in parallel due to possible lambda expression side-effects. In this paper, we describe the engineering aspects of an open source automated refactoring tool called Optimize Streams that assists developers in writing optimal stream software in an (observable) semantics-preserving fashion. Based on a novel ordering and typestate analysis, the tool is implemented as a plug-in to the Eclipse IDE, using both the WALA and SAFE frameworks. It was evaluated on 11 Java projects consisting of ~642 thousand lines of code, where we found that of candidate streams were refactorable, and an average speedup of on a performance suite was observed. We also describe experiences gained from integrating three very different static analysis frameworks to provide developers with an easy-to-use interface for optimizing their stream code to its full potential

    Safe Automated Refactoring for Intelligent Parallelization of Java 8 Streams

    Full text link
    Streaming APIs are becoming more pervasive in mainstream Object-Oriented programming languages. For example, the Stream API introduced in Java 8 allows for functional-like, MapReduce-style operations in processing both finite and infinite data structures. However, using this API efficiently involves subtle considerations like determining when it is best for stream operations to run in parallel, when running operations in parallel can be less efficient, and when it is safe to run in parallel due to possible lambda expression side-effects. In this paper, we present an automated refactoring approach that assists developers in writing efficient stream code in a semantics-preserving fashion. The approach, based on a novel data ordering and typestate analysis, consists of preconditions for automatically determining when it is safe and possibly advantageous to convert sequential streams to parallel and unorder or de-parallelize already parallel streams. The approach was implemented as a plug-in to the Eclipse IDE, uses the WALA and SAFE analysis frameworks, and was evaluated on 11 Java projects consisting of ∼642K lines of code. We found that 57 of 157 candidate streams (36.31%) were refactorable, and an average speedup of 3.49 on performance tests was observed. The results indicate that the approach is useful in optimizing stream code to their full potential

    Safe Automated Refactoring for Intelligent Parallelization of Java 8 Streams

    Full text link
    Streaming APIs are becoming more pervasive in mainstream Object-Oriented programming languages and platforms. For example, the Stream API introduced in Java 8 allows for functional-like, MapReduce-style operations in processing both finite, e.g., collections, and infinite data structures. However, using this API efficiently involves subtle considerations such as determining when it is best for stream operations to run in parallel, when running operations in parallel can be less efficient, and when it is safe to run in parallel due to possible lambda expression side-effects. Also, streams may not run all operations in parallel depending on particular collectors used in reductions. In this paper, we present an automated refactoring approach that assists developers in writing efficient stream code in a semantics-preserving fashion. The approach, based on a novel data ordering and typestate analysis, consists of preconditions and transformations for automatically determining when it is safe and possibly advantageous to convert sequential streams to parallel, unorder or de-parallelize already parallel streams, and optimize streams involving complex reductions. The approach was implemented as a plug-in to the popular Eclipse IDE, uses the WALA and SAFE analysis frameworks, and was evaluated on 11 Java projects consisting of ∼642K lines of code. We found that 57 of 157 candidate streams (36.31%) were refactorable, and an average speedup of 3.49 on performance tests was observed. The results indicate that the approach is useful in optimizing stream code to their full potential

    Safe Automated Refactoring for Intelligent Parallelization of Java 8 Streams

    Full text link
    Streaming APIs are becoming more pervasive in mainstream Object-Oriented programming languages and platforms. For example, the Stream API introduced in Java 8 allows for functional-like, MapReduce-style operations in processing both finite, e.g., collections, and infinite data structures. However, using this API efficiently involves subtle considerations such as determining when it is best for stream operations to run in parallel, when running operations in parallel can be less efficient, and when it is safe to run in parallel due to possible lambda expression side-effects. ics-preserving fashion. The approach, based on a novel data ordering and typestate analysis, consists of preconditions and transformations for automatically determining when it is safe and possibly advantageous to convert sequential streams to parallel and unorder or de-parallelize already parallel streams. The approach was implemented as a plug-in to the popular Eclipse IDE, uses the WALA and SAFE analysis frameworks, and was evaluated on 18 Java projects consisting of ∼1.65M lines of code. We found that 116 of 419 candidate streams (27.68%) were refactorable, and an average speedup of 3.49 on performance tests was observed. The results indicate that the approach is useful in optimizing stream code to their full potential

    Towards Automated Software Evolution of Data-Intensive Applications

    Full text link
    Recent years have witnessed an explosion of work on Big Data. Data-intensive applications analyze and produce large volumes of data typically terabyte and petabyte in size. Many techniques for facilitating data processing are integrated into data-intensive applications. API is a software interface that allows two applications to communicate with each other. Streaming APIs are widely used in today\u27s Object-Oriented programming development that can support parallel processing. In this dissertation, an approach that automatically suggests stream code run in parallel or sequentially is proposed. However, using streams efficiently and properly needs many subtle considerations. The use and misuse patterns for stream codes are proposed in this dissertation. Modern software, especially for highly transactional software systems, generates vast logging information every day. The huge amount of information prevents developers from receiving useful information effectively. Log-level could be used to filter run-time information. This dissertation proposes an automated evolution approach for alleviating logging information overload by rejuvenating log levels according to developers\u27 interests. Machine Learning (ML) systems are pervasive in today\u27s software society. They are always complex and can process large volumes of data. Due to the complexity of ML systems, they are prone to classic technical debt issues, but how ML systems evolve is still a puzzling problem. This dissertation introduces ML-specific refactoring and technical debt for solving this problem
    corecore