2 research outputs found

    Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors

    Get PDF
    Motor function loss greatly impacts post-stroke survivors while performing activities of daily living. In the recent years, intelligent rehabilitation robotics have been proposed to enable the patients recover their lost limb functions. Besides, a large proportion of these robots function in passive mode that only allow users to navigate trajectories that rarely align with their limb movement intent, thus precluding full functional recovery. A potential solution would be to explore utilizing an efficient Transfer Learning based Convolutional Neural Network (TL-CNN) to decode multiple classes of post-stroke patients’ motion intentions towards realizing dexterously active robotic training during rehabilitation. In this regard, we propose and examined for the first time, the use of Spatial-Temporal Descriptor based Continuous Wavelet Transform (STD-CWT) as input to TL-CNN to optimally decode limb movement intent patterns of stroke patients to provide adequate input for active motor training in rehabilitation robots. Importantly, we examined the proposed (STD-CWT) method on three distinct wavelets including the Morse, Amor, and Bump, and compared their decoding outcomes with those of the commonly adopted CWT technique under similar experimental conditions. Our method was validated using electromyogram signals of five stroke survivors who performed up to twenty-two distinct limb motions. The obtained results showed that the proposed technique recorded a significantly higher decoding (p<0.05) and converges faster compared to the commonly adopted method. The proposed method equally recorded obvious class separability for individual movement classes across the stroke patients. Findings from this study suggest that the STD-CWT Scalograms would provide potential inputs for robust decoding of motor intent that may facilitate intuitively active motor training in stroke rehabilitation robots. © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Towards resolving the co-existing impacts of multiple dynamic factors on the performance of EMG-pattern recognition based prostheses

    No full text
    Background and Objective: Mobility of subject (MoS) and muscle contraction force variation (MCFV) have been shown to individually degrade the performance of multiple degrees of freedom electromyogram (EMG) pattern recognition (PR) based prostheses control systems. Though these factors (MoS-MCFV) co-exist simultaneously in the practical use of the prosthesis, their combined impact on PR-based system has rarely been studied especially in the context of amputees who are the target users of the device. Methods: To address this problem, this study systematically investigated the co-existing impact of MoS-MCFV on the performance of PR-based movement intent classifier, using EMG recordings acquired from eight participants who performed multiple classes of targeted limb movements across static and non-static scenarios with three distinct muscle contraction force levels. Then, a robust feature extraction method that is invariant to the combined effect of MoS-MCFV, namely, invariant time-domain descriptor (invTDD), was proposed to optimally characterize the multi-class EMG signal patterns in the presence of both factors. Results: Experimental results consistently showed that the proposed invTDD method could significantly mitigate the co-existing impact of MoS-MCFV on PR-based movement-intent classifier with error reduction in the range of 7.50%~17.97% (p<0.05), compared to the commonly applied methods. Further evaluation using 2-dimentional principal component analysis (PCA) technique, revealed that the proposed invTDD method has obvious class-separability in the PCA feature space, with a significantly lower standard error (0.91%) compared to the existing methods. Conclusion: This study offers compelling insight on how to develop accurately robust multiple degrees of freedom control scheme for multifunctional prostheses that would be clinically viable. Also, the study may spur positive advancement in other application areas of medical robotics that adopts myoelectric control schemes such as the electric wheelchair and human-computer-interaction systems
    corecore