2,695 research outputs found

    Speaker-following Video Subtitles

    Full text link
    We propose a new method for improving the presentation of subtitles in video (e.g. TV and movies). With conventional subtitles, the viewer has to constantly look away from the main viewing area to read the subtitles at the bottom of the screen, which disrupts the viewing experience and causes unnecessary eyestrain. Our method places on-screen subtitles next to the respective speakers to allow the viewer to follow the visual content while simultaneously reading the subtitles. We use novel identification algorithms to detect the speakers based on audio and visual information. Then the placement of the subtitles is determined using global optimization. A comprehensive usability study indicated that our subtitle placement method outperformed both conventional fixed-position subtitling and another previous dynamic subtitling method in terms of enhancing the overall viewing experience and reducing eyestrain

    Ventriloquism effect with sound stimuli varying in both azimuth and elevation

    No full text
    Copyright 2015 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.The following article appeared in Etienne Hendrickx, Mathieu Paquier, Vincent Koehl and Julian Palacino, Ventriloquism effect with sound stimuli varying in both azimuth and elevation, The Journal of the Acoustical Society of America 2015, vol. 138, no 6, pp. 3686–3697.and may be found at http://link.aip.org/link/?JAS/138/3686International audienceWhen presented with a spatially discordant auditory-visual stimulus, subjects sometimes perceive the sound and the visual stimuli as coming from the same location. Such a phenomenon is often referred to as perceptual fusion or ventriloquism, as it evokes the illusion created by a ventriloquist when his voice seems to emanate from his puppet rather than from his mouth. While this effect has been extensively examined in the horizontal plane and to a lesser extent in distance, few psychoacoustic studies have focused on elevation. In the present experiment, sequences of a man talking were presented to subjects. His voice could be reproduced on different loudspeakers, which created disparities in both azimuth and elevation between the sound and the visual stimuli. For each presentation, subjects had to indicate whether the voice seemed to emanate from the mouth of the actor or not. Results showed that ventriloquism could be observed with larger audiovisual disparities in elevation than in azimuth

    Zero-shot keyword spotting for visual speech recognition in-the-wild

    Full text link
    Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.Comment: Accepted at ECCV-201

    Vision-based Detection of Acoustic Timed Events: a Case Study on Clarinet Note Onsets

    Get PDF
    Acoustic events often have a visual counterpart. Knowledge of visual information can aid the understanding of complex auditory scenes, even when only a stereo mixdown is available in the audio domain, \eg identifying which musicians are playing in large musical ensembles. In this paper, we consider a vision-based approach to note onset detection. As a case study we focus on challenging, real-world clarinetist videos and carry out preliminary experiments on a 3D convolutional neural network based on multiple streams and purposely avoiding temporal pooling. We release an audiovisual dataset with 4.5 hours of clarinetist videos together with cleaned annotations which include about 36,000 onsets and the coordinates for a number of salient points and regions of interest. By performing several training trials on our dataset, we learned that the problem is challenging. We found that the CNN model is highly sensitive to the optimization algorithm and hyper-parameters, and that treating the problem as binary classification may prevent the joint optimization of precision and recall. To encourage further research, we publicly share our dataset, annotations and all models and detail which issues we came across during our preliminary experiments.Comment: Proceedings of the First International Conference on Deep Learning and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [cs.NE]

    Egocentric Auditory Attention Localization in Conversations

    Full text link
    In a noisy conversation environment such as a dinner party, people often exhibit selective auditory attention, or the ability to focus on a particular speaker while tuning out others. Recognizing who somebody is listening to in a conversation is essential for developing technologies that can understand social behavior and devices that can augment human hearing by amplifying particular sound sources. The computer vision and audio research communities have made great strides towards recognizing sound sources and speakers in scenes. In this work, we take a step further by focusing on the problem of localizing auditory attention targets in egocentric video, or detecting who in a camera wearer's field of view they are listening to. To tackle the new and challenging Selective Auditory Attention Localization problem, we propose an end-to-end deep learning approach that uses egocentric video and multichannel audio to predict the heatmap of the camera wearer's auditory attention. Our approach leverages spatiotemporal audiovisual features and holistic reasoning about the scene to make predictions, and outperforms a set of baselines on a challenging multi-speaker conversation dataset. Project page: https://fkryan.github.io/saa
    • …
    corecore