2 research outputs found

    A solution to smart health and state of art

    Get PDF
    A medical cyber–physical system (MCPS) is a unique cyber–physical system (CPS), which combines embedded software control devices, networking capabilities, and complex physiological dynamics of patients in the modern medical field. In the process of communication, device, and information system interaction of MCPS, medical cyber–physical data are generated digitally, stored electronically, and accessed remotely by medical staff or patients. With the advent of the era of medical big data, a large amount of medical cyber–physical data is collected, and its sharing provides great value for diagnosis, pathological analysis, epidemic tracking, pharmaceutical, insurance, and so on. This overview will present MCPS’s architectures and frameworks from different perspectives, modeling and verification methods, identification and sign sensing technologies, key communications’ technologies, data storage and analysis technologies, monitoring systems, data security and privacy protection technologies, and key research perspectives and directions. We can have a com- prehensive understanding of the important characteristics and technical route of MCPS, and grasp its research status and progress

    SMCP: a Secure Mobile Crowdsensing Protocol for fog-based applications

    Get PDF
    The possibility of performing complex data analysis through sets of cooperating personal smart devices has recently encouraged the definition of new distributed computing paradigms. The general idea behind these approaches is to move early analysis towards the edge of the network, while relying on other intermediate (fog) or remote (cloud) devices for computations of increasing complexity. Unfortunately, because both of their distributed nature and high degree of modularity, edge-fog-cloud computing systems are particularly prone to cyber security attacks that can be performed against every element of the infrastructure. In order to address this issue, in this paper we present SMCP, a Secure Mobile Crowdsensing Protocol for fog-based applications that exploit lightweight encryption techniques that are particularly suited for low-power mobile edge devices. In order to assess the performance of the proposed security mechanisms, we consider as case study a distributed human activity recognition scenario in which machine learning algorithms are performed by users’ personal smart devices at the edge and fog layers. The functionalities provided by SMCP have been directly compared with two state-of-the-art security protocols. Results show that our approach allows to achieve a higher degree of security while maintaining a low computational cost
    corecore