3,717 research outputs found

    Optimization of Elastic Cloud Brokerage Mechanisms for Future Telecommunication Service Environments

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Cloud computing mechanisms and cloud-based services are currently revolutionizing Web as well as telecommunication service platforms and service offerings. Apart from providing infrastructures, platforms and software as a service, mechanism for dynamic allocation of compute and storage resources on-demand, commonly termed as “elastic cloud computing” account for the most important cloud computing functionalities. Resource elasticity allows not only for efficient internal compute and storage resource consumption, but also, through so called hybrid cloud computing mechanisms, for dynamic utilization of external resources on-demand. This capability is especially useful in order to cost-efficiently cope with peakworkloads, allowing service providers to significantly reduce usually required over-provisioned service infrastructures, allowing for “pay-per-use” cost models. With a steadily growing number of cloud providers and with the proliferation of unified cloud computing interfaces, service providers are given free choice of flexibly selecting and utilizing cloud resources from different cloud providers. Cloud brokering systems allow for dynamic selection and utilization of cloud computing resources based on functional (e.g. QoS, SLA, energy consumption) as well as nonfunctional criteria (e.g. costs). The presented work focuses on enhanced cloud brokering mechanisms for telecommunication service platforms, enabling quality telecommunication service assurance, still optimizing cloud resources consumption, i.e. saving costs and energy. Furthermore this work shows that by combining cloud brokering mechanisms with standardized telecommunication service brokering mechanisms an even greater benefit for telecommunication service providers can be achieved as this enables an even better cost-efficiency since different user segments can seamlessly be served by allocating different cloud resources to them in a policy-driven manner

    Quality management of surveillance multimedia streams via federated SDN controllers in Fiwi-iot integrated deployment environments

    Get PDF
    Traditionally, hybrid optical-wireless networks (Fiber-Wireless - FiWi domain) and last-mile Internet of Things edge networks (Edge IoT domain) have been considered independently, with no synergic management solutions. On the one hand, FiWi has primarily focused on high-bandwidth and low-latency access to cellular-equipped nodes. On the other hand, Edge IoT has mainly aimed at effective dispatching of sensor/actuator data among (possibly opportunistic) nodes, by using direct peer-to-peer and base station (BS)-assisted Internet communications. The paper originally proposes a model and an architecture that loosely federate FiWi and Edge IoT domains based on the interaction of FiWi and Edge IoT software defined networking controllers: The primary idea is that our federated controllers can seldom exchange monitoring data and control hints the one with the other, thus mutually enhancing their capability of end-to-end quality-aware packet management. To show the applicability and the effectiveness of the approach, our original proposal is applied to the notable example of multimedia stream provisioning from surveillance cameras deployed in the Edge IoT domain to both an infrastructure-side server and spontaneously interconnected mobile smartphones; our solution is able to tune the BS behavior of the FiWi domain and to reroute/prioritize traffic in the Edge IoT domain, with the final goal to reduce latency. In addition, the reported application case shows the capability of our solution of joint and coordinated exploitation of resources in FiWi and Edge IoT domains, with performance results that highlight its benefits in terms of efficiency and responsiveness

    Resource Allocation in 4G and 5G Networks: A Review

    Get PDF
    The advent of 4G and 5G broadband wireless networks brings several challenges with respect to resource allocation in the networks. In an interconnected network of wireless devices, users, and devices, all compete for scarce resources which further emphasizes the fair and efficient allocation of those resources for the proper functioning of the networks. The purpose of this study is to discover the different factors that are involved in resource allocation in 4G and 5G networks. The methodology used was an empirical study using qualitative techniques by performing literature reviews on the state of art in 4G and 5G networks, analyze their respective architectures and resource allocation mechanisms, discover parameters, criteria and provide recommendations. It was observed that resource allocation is primarily done with radio resource in 4G and 5G networks, owing to their wireless nature, and resource allocation is measured in terms of delay, fairness, packet loss ratio, spectral efficiency, and throughput. Minimal consideration is given to other resources along the end-to-end 4G and 5G network architectures. This paper defines more types of resources, such as electrical energy, processor cycles and memory space, along end-to-end architectures, whose allocation processes need to be emphasized owing to the inclusion of software defined networking and network function virtualization in 5G network architectures. Thus, more criteria, such as electrical energy usage, processor cycle, and memory to evaluate resource allocation have been proposed.  Finally, ten recommendations have been made to enhance resource allocation along the whole 5G network architecture

    Run-time Support for Real-Time Multimedia in the Cloud

    Get PDF
    REACTION 2013. 2nd International Workshop on Real-time and distributed computing in emerging applications. December 3rd, 2013, Vancouver, Canada.This paper summarizes key research findings in the area of real-time performance and predictabil- ity of multimedia applications in cloud infrastruc- tures, namely: outcomes of the IRMOS European Project, addressing predictability of standard vir- tualized infrastructures; Osprey, an Operating Sys- tem with a novel design suitable for a multitude of heterogeneous workloads including real-time soft- ware; MediaCloud, a novel run-time architecture for offering on-demand multimedia processing facil- ities with unprecedented dynamism and flexibility in resource management. The paper highlights key research challenges ad- dressed by these projects and shortly presents ad- ditional questions lying ahead in this area

    5G framework for automated network adaptation in mission critical services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Mission Critical Services (MCS) are gaining interest among network operators to offer alternative communications than conventional trunked radio systems. They promise a simplified management of cloud and radio resources for service deployment. However, the network capabilities should be adapted for the changing conditions, to assure low-latency and reliability for such applications. This paper presents an on-going work on utilising 5G technology for Mission Critical Push To Talk (MCPTT) services. It describes some design elements and evaluates 5G ESSENCE architecture that enable mission critical applications.Peer ReviewedPostprint (author's final draft

    Encryption Mechanism And Resource Allocation Optimization Based On Edge Computing Environment

    Full text link
    A method for optimizing encryption mechanism and resource allocation based on edge computing environment is proposed. A local differential privacy algorithm based on a histogram algorithm is used to protect user information during task offloading, which allows accurate preservation of user contextual information while reducing interference with the playback decision. To efficiently offload tasks and improve offloading performance, a joint optimization algorithm for task offloading and resource allocation is proposed that optimizes overall latency. A balance will be found between privacy protection and task offloading accuracy. The impact of contextual data interference on task offloading decisions is minimized while ensuring a predefined level of privacy protection. In the concrete connected vehicle example, the method distributes tasks among roadside devices and neighboring vehicles with sufficient computational resources
    • …
    corecore