3 research outputs found

    Cooperative UAV–UGV autonomous power pylon inspection: an investigation of cooperative outdoor vehicle positioning architecture

    Get PDF
    Realizing autonomous inspection, such as that of power distribution lines, through unmanned aerial vehicle (UAV) systems is a key research domain in robotics. In particular, the use of autonomous and semi-autonomous vehicles to execute the tasks of an inspection process can enhance the efficacy and safety of the operation; however, many technical problems, such as those pertaining to the precise positioning and path following of the vehicles, robust obstacle detection, and intelligent control, must be addressed. In this study, an innovative architecture involving an unmanned aircraft vehicle (UAV) and an unmanned ground vehicle (UGV) was examined for detailed inspections of power lines. In the proposed strategy, each vehicle provides its position information to the other, which ensures a safe inspection process. The results of real-world experiments indicate a satisfactory performance, thereby demonstrating the feasibility of the proposed approach.This research was funded by National Counsel of Technological and Scientific Development of Brazil (CNPq). The authors thank the National Counsel of Technological and Scientific Development of Brazil (CNPq); Coordination for the Improvement of Higher Level People (CAPES); and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC). The authors would also like express their deepest gratitude to Control Robotics for sharing the Pioneer P3 robot for the experiments. Thanks to Leticia Cantieri for editing the experiment video.info:eu-repo/semantics/publishedVersio

    Control system for autonomous landing on moving platforms

    Get PDF
    En los tiempos que vivimos, el auge existente en los UAV es notable. Han ido adquiriendo competencias múltiples debido a su gran fiabilidad, operatividad económica, y capacidad para adaptarse a un gran rango de entornos. Este proyecto se centra en los Quadcoter, que son uno de los UAV’s más usados hoy en día, debido a su gran maniobrabilidad y mecánica simple. Aterrizar en cualquier sitio sin necesidad de un piloto ya esté tanto dentro como fuera de la aeronave, se ha convertido en uno de los campos de estudio sobre Drones más amplio y desarrollado. Este documento muestra el Trabajo Fin de Grado titulado ‘CONTROL SYSTEM FOR AUTONOMOUS LANDING ON MOVING PLATFORMS’, desarrollado en el Laboratorio de Sistemas Inteligentes de la Universidad Carlos III de Madrid, en la Escuela Politécnica superior de Leganés. En este proyecto se implementará un controlador PID cuya función principal es aproximar al vehículo aéreo a una posición de aterrizaje determinada. El Drone va restando progresivamente los errores de la distancia hasta el destino y el valor se introduce en el controlador, este lo traduce a comandos de Roll Pitch y Throttle, que se mandan a una controladora para implementar una fuerza determinada a cada uno de los cuatro motores del Drone y de esta manera dirigirlo al destino. El primer experimento realizado para analizar el controlador consiste en posicionar el Drone en un punto inicial en el espacio aleatorio y a su vez una posición de destino (aterrizaje). Y observar que tendencia tienen los comandos de Pitch, Roll y Throttle. Cuanto más alejando esté el Drone del punto final, mayor será el comando devuelto, por lo tanto mayor es la fuerza que se implementa a cada uno de los motores. Los siguientes experimentos consisten en obtener la respuesta del controlador a medida que el Quadcopter recorre una trayectoria. Las trayectorias simuladas van desde una simple línea recta, hasta una aproximación desde una altura ‘H’, recorriendo ‘N’ puntos de coordenadas de un espacio de 3D.Nowadays, UAV’s influence is very remarkable. They have been acquiring multiple roles, thanks to their reliability, economical operations and capacity to adapt to a great range of environments. The main topic of this project is focused on Quadcopters. They are one of the most used UAV’s because their great maneuverability and simple mechanics. Land in every single place without a pilot either inside or outside the aircraft, has become one of the biggest and most developed Drone’s study fields. In this document it is shown the Final Project Degree named ‘CONTROL SYSTEM FOR AUTONOMOUS LANDING ON MOVING PLATFORMS’, developed in the Intelligent System Lab of the Universidad Carlos III de Madrid, in the Superior Technical School of Leganés. In this project is going to be implemented a PID controller. Which its main role is to approach the aerial vehicle to a landing position. Firstly the Quadcopter is going to subtract the distance error between the actual position and final one thanks to the GPS. This error will be the input of the PID controller, and finally the controller translates it into an effort which is sent to PX4 internal controller to applying a force in each of the four Drone engines. The first experiment to analyze the PID controller behavior, consists in pre-program a random array of 3D initial positions, also a landing point in order to observe the trend of each command which is the PID output. As farther the Drone is from landing position, greater would be the command returned, as well as the engines power will be greater. The following experiments consist in obtaining the controller response at the same time the Drone is flying through a path. Simulated paths have different elaboration, from a simple straight line complexity to approach from an ‘H’ altitude, flying through ‘N’ points of coordinates in 3D space.Ingeniería Electrónica Industrial y Automátic

    Towards Autonomous Tracking and Landing on Moving Target

    No full text
    The battery capacity of Unmanned Aerial Vehicle (UAV) is the main limitation, but with the rapid growth of UAV deployment in both military and civilian application, there is an urgent need to development the reliable and automated landing procedure. This paper is aim to propose a basic framework for autonomous landing on moving target for the Vertical Take-off and Landing (VTOL) UAVs. The VTOL vehicle is assumed to equip with a Global Navigation Satellite System (GNSS) system and a stereo vision system which could generate the point cloud within 20 meters. We applied a particle filter based Visual Servo in the UAV vision system to detect and track the moving the target at real time. We also combine the inertial measurement unit (IMU) data with the stereo vision based visual odometry to make the relative accurate pose estimation. The relative position, orientation and velocity to the landing area on the moving carrier is obtained by a modified optical flow method. The control method used in this framework combined tracking and approaching base on the range distance. We has applied our proposed framework on both simulation and landing task on a moving vehicle, and the result shows the efficiency and extended ability of our framework
    corecore