1,663 research outputs found

    Watch and Learn: Semi-Supervised Learning of Object Detectors from Videos

    Full text link
    We present a semi-supervised approach that localizes multiple unknown object instances in long videos. We start with a handful of labeled boxes and iteratively learn and label hundreds of thousands of object instances. We propose criteria for reliable object detection and tracking for constraining the semi-supervised learning process and minimizing semantic drift. Our approach does not assume exhaustive labeling of each object instance in any single frame, or any explicit annotation of negative data. Working in such a generic setting allow us to tackle multiple object instances in video, many of which are static. In contrast, existing approaches either do not consider multiple object instances per video, or rely heavily on the motion of the objects present. The experiments demonstrate the effectiveness of our approach by evaluating the automatically labeled data on a variety of metrics like quality, coverage (recall), diversity, and relevance to training an object detector.Comment: To appear in CVPR 201

    On the Importance of Visual Context for Data Augmentation in Scene Understanding

    Get PDF
    Performing data augmentation for learning deep neural networks is known to be important for training visual recognition systems. By artificially increasing the number of training examples, it helps reducing overfitting and improves generalization. While simple image transformations can already improve predictive performance in most vision tasks, larger gains can be obtained by leveraging task-specific prior knowledge. In this work, we consider object detection, semantic and instance segmentation and augment the training images by blending objects in existing scenes, using instance segmentation annotations. We observe that randomly pasting objects on images hurts the performance, unless the object is placed in the right context. To resolve this issue, we propose an explicit context model by using a convolutional neural network, which predicts whether an image region is suitable for placing a given object or not. In our experiments, we show that our approach is able to improve object detection, semantic and instance segmentation on the PASCAL VOC12 and COCO datasets, with significant gains in a limited annotation scenario, i.e. when only one category is annotated. We also show that the method is not limited to datasets that come with expensive pixel-wise instance annotations and can be used when only bounding boxes are available, by employing weakly-supervised learning for instance masks approximation.Comment: Updated the experimental section. arXiv admin note: substantial text overlap with arXiv:1807.0742

    Automatic Action Annotation in Weakly Labeled Videos

    Full text link
    Manual spatio-temporal annotation of human action in videos is laborious, requires several annotators and contains human biases. In this paper, we present a weakly supervised approach to automatically obtain spatio-temporal annotations of an actor in action videos. We first obtain a large number of action proposals in each video. To capture a few most representative action proposals in each video and evade processing thousands of them, we rank them using optical flow and saliency in a 3D-MRF based framework and select a few proposals using MAP based proposal subset selection method. We demonstrate that this ranking preserves the high quality action proposals. Several such proposals are generated for each video of the same action. Our next challenge is to iteratively select one proposal from each video so that all proposals are globally consistent. We formulate this as Generalized Maximum Clique Graph problem using shape, global and fine grained similarity of proposals across the videos. The output of our method is the most action representative proposals from each video. Our method can also annotate multiple instances of the same action in a video. We have validated our approach on three challenging action datasets: UCF Sport, sub-JHMDB and THUMOS'13 and have obtained promising results compared to several baseline methods. Moreover, on UCF Sports, we demonstrate that action classifiers trained on these automatically obtained spatio-temporal annotations have comparable performance to the classifiers trained on ground truth annotation

    Activity Driven Weakly Supervised Object Detection

    Full text link
    Weakly supervised object detection aims at reducing the amount of supervision required to train detection models. Such models are traditionally learned from images/videos labelled only with the object class and not the object bounding box. In our work, we try to leverage not only the object class labels but also the action labels associated with the data. We show that the action depicted in the image/video can provide strong cues about the location of the associated object. We learn a spatial prior for the object dependent on the action (e.g. "ball" is closer to "leg of the person" in "kicking ball"), and incorporate this prior to simultaneously train a joint object detection and action classification model. We conducted experiments on both video datasets and image datasets to evaluate the performance of our weakly supervised object detection model. Our approach outperformed the current state-of-the-art (SOTA) method by more than 6% in mAP on the Charades video dataset.Comment: CVPR'19 camera read

    Weakly Labeled Action Recognition and Detection

    Get PDF
    Research in human action recognition strives to develop increasingly generalized methods that are robust to intra-class variability and inter-class ambiguity. Recent years have seen tremendous strides in improving recognition accuracy on ever larger and complex benchmark datasets, comprising realistic actions in the wild videos. Unfortunately, the all-encompassing, dense, global representations that bring about such improvements often benefit from the inherent characteristics, specific to datasets and classes, that do not necessarily reflect knowledge about the entity to be recognized. This results in specific models that perform well within datasets but generalize poorly. Furthermore, training of supervised action recognition and detection methods need several precise spatio-temporal manual annotations to achieve good recognition and detection accuracy. For instance, current deep learning architectures require millions of accurately annotated videos to learn robust action classifiers. However, these annotations are quite difficult to achieve. In the first part of this dissertation, we explore the reasons for poor classifier performance when tested on novel datasets, and quantify the effect of scene backgrounds on action representations and recognition. We attempt to address the problem of recognizing human actions while training and testing on distinct datasets when test videos are neither labeled nor available during training. In this scenario, learning of a joint vocabulary, or domain transfer techniques are not applicable. We perform different types of partitioning of the GIST feature space for several datasets and compute measures of background scene complexity, as well as, for the extent to which scenes are helpful in action classification. We then propose a new process to obtain a measure of confidence in each pixel of the video being a foreground region using motion, appearance, and saliency together in a 3D-Markov Random Field (MRF) based framework. We also propose multiple ways to exploit the foreground confidence: to improve bag-of-words vocabulary, histogram representation of a video, and a novel histogram decomposition based representation and kernel. The above-mentioned work provides probability of each pixel being belonging to the actor, however, it does not give the precise spatio-temporal location of the actor. Furthermore, above framework would require precise spatio-temporal manual annotations to train an action detector. However, manual annotations in videos are laborious, require several annotators and contain human biases. Therefore, in the second part of this dissertation, we propose a weakly labeled approach to automatically obtain spatio-temporal annotations of actors in action videos. We first obtain a large number of action proposals in each video. To capture a few most representative action proposals in each video and evade processing thousands of them, we rank them using optical flow and saliency in a 3D-MRF based framework and select a few proposals using MAP based proposal subset selection method. We demonstrate that this ranking preserves the high-quality action proposals. Several such proposals are generated for each video of the same action. Our next challenge is to iteratively select one proposal from each video so that all proposals are globally consistent. We formulate this as Generalized Maximum Clique Graph problem (GMCP) using shape, global and fine-grained similarity of proposals across the videos. The output of our method is the most action representative proposals from each video. Using our method can also annotate multiple instances of the same action in a video can also be annotated. Moreover, action detection experiments using annotations obtained by our method and several baselines demonstrate the superiority of our approach. The above-mentioned annotation method uses multiple videos of the same action. Therefore, in the third part of this dissertation, we tackle the problem of spatio-temporal action localization in a video, without assuming the availability of multiple videos or any prior annotations. The action is localized by employing images downloaded from the Internet using action label. Given web images, we first dampen image noise using random walk and evade distracting backgrounds within images using image action proposals. Then, given a video, we generate multiple spatio-temporal action proposals. We suppress camera and background generated proposals by exploiting optical flow gradients within proposals. To obtain the most action representative proposals, we propose to reconstruct action proposals in the video by leveraging the action proposals in images. Moreover, we preserve the temporal smoothness of the video and reconstruct all proposal bounding boxes jointly using the constraints that push the coefficients for each bounding box toward a common consensus, thus enforcing the coefficient similarity across multiple frames. We solve this optimization problem using the variant of two-metric projection algorithm. Finally, the video proposal that has the lowest reconstruction cost and is motion salient is used to localize the action. Our method is not only applicable to the trimmed videos, but it can also be used for action localization in untrimmed videos, which is a very challenging problem. Finally, in the third part of this dissertation, we propose a novel approach to generate a few properly ranked action proposals from a large number of noisy proposals. The proposed approach begins with dividing each proposal into sub-proposals. We assume that the quality of proposal remains the same within each sub-proposal. We, then employ a graph optimization method to recombine the sub-proposals in all action proposals in a single video in order to optimally build new action proposals and rank them by the combined node and edge scores. For an untrimmed video, we first divide the video into shots and then make the above-mentioned graph within each shot. Our method generates a few ranked proposals that can be better than all the existing underlying proposals. Our experimental results validated that the properly ranked action proposals can significantly boost action detection results. Our extensive experimental results on different challenging and realistic action datasets, comparisons with several competitive baselines and detailed analysis of each step of proposed methods validate the proposed ideas and frameworks
    • …
    corecore