9 research outputs found

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper

    On the Relative Strength of Pebbling and Resolution

    Full text link
    The last decade has seen a revival of interest in pebble games in the context of proof complexity. Pebbling has proven a useful tool for studying resolution-based proof systems when comparing the strength of different subsystems, showing bounds on proof space, and establishing size-space trade-offs. The typical approach has been to encode the pebble game played on a graph as a CNF formula and then argue that proofs of this formula must inherit (various aspects of) the pebbling properties of the underlying graph. Unfortunately, the reductions used here are not tight. To simulate resolution proofs by pebblings, the full strength of nondeterministic black-white pebbling is needed, whereas resolution is only known to be able to simulate deterministic black pebbling. To obtain strong results, one therefore needs to find specific graph families which either have essentially the same properties for black and black-white pebbling (not at all true in general) or which admit simulations of black-white pebblings in resolution. This paper contributes to both these approaches. First, we design a restricted form of black-white pebbling that can be simulated in resolution and show that there are graph families for which such restricted pebblings can be asymptotically better than black pebblings. This proves that, perhaps somewhat unexpectedly, resolution can strictly beat black-only pebbling, and in particular that the space lower bounds on pebbling formulas in [Ben-Sasson and Nordstrom 2008] are tight. Second, we present a versatile parametrized graph family with essentially the same properties for black and black-white pebbling, which gives sharp simultaneous trade-offs for black and black-white pebbling for various parameter settings. Both of our contributions have been instrumental in obtaining the time-space trade-off results for resolution-based proof systems in [Ben-Sasson and Nordstrom 2009].Comment: Full-length version of paper to appear in Proceedings of the 25th Annual IEEE Conference on Computational Complexity (CCC '10), June 201

    Hardness measures and resolution lower bounds

    Full text link
    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this report we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. We also extend these measures to all clause-sets (possibly satisfiable).Comment: 43 pages, preliminary version (yet the application part is only sketched, with proofs missing

    Space complexity in polynomial calculus

    Get PDF
    During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems that are used by SAT solvers. There has been a relatively long sequence of papers on space in resolution, which is now reasonably well understood from this point of view. For other natural candidates to study, however, such as polynomial calculus or cutting planes, very little has been known. We are not aware of any nontrivial space lower bounds for cutting planes, and for polynomial calculus the only lower bound has been for CNF formulas of unbounded width in [Alekhnovich et al. ’02], where the space lower bound is smaller than the initial width of the clauses in the formulas. Thus, in particular, it has been consistent with current knowledge that polynomial calculus could be able to refute any k-CNF formula in constant space. In this paper, we prove several new results on space in polynomial calculus (PC), and in the extended proof system polynomial calculus resolution (PCR) studied in [Alekhnovich et al. ’02]: 1. We prove an Ω(n) space lower bound in PC for the canonical 3-CNF version of the pigeonhole principle formulas PHPm n with m pigeons and n holes, and show that this is tight. 2. For PCR, we prove an Ω(n) space lower bound for a bitwise encoding of the functional pigeonhole principle. These formulas have width O(log n), and hence this is an exponential improvement over [Alekhnovich et al. ’02] measured in the width of the formulas. 3. We then present another encoding of the pigeonhole principle that has constant width, and prove an Ω(n) space lower bound in PCR for these formulas as well. 4. Finally, we prove that any k-CNF formula can be refuted in PC in simultaneous exponential size and linear space (which holds for resolution and thus for PCR, but was not obviously the case for PC). We also characterize a natural class of CNF formulas for which the space complexity in resolution and PCR does not change when the formula is transformed into 3-CNF in the canonical way, something that we believe can be useful when proving PCR space lower bounds for other well-studied formula families in proof complexity

    LIPIcs

    Get PDF
    We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure

    Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

    Full text link
    For current state-of-the-art DPLL SAT-solvers the two main bottlenecks are the amounts of time and memory used. In proof complexity, these resources correspond to the length and space of resolution proofs. There has been a long line of research investigating these proof complexity measures, but while strong results have been established for length, our understanding of space and how it relates to length has remained quite poor. In particular, the question whether resolution proofs can be optimized for length and space simultaneously, or whether there are trade-offs between these two measures, has remained essentially open. In this paper, we remedy this situation by proving a host of length-space trade-off results for resolution. Our collection of trade-offs cover almost the whole range of values for the space complexity of formulas, and most of the trade-offs are superpolynomial or even exponential and essentially tight. Using similar techniques, we show that these trade-offs in fact extend to the exponentially stronger k-DNF resolution proof systems, which operate with formulas in disjunctive normal form with terms of bounded arity k. We also answer the open question whether the k-DNF resolution systems form a strict hierarchy with respect to space in the affirmative. Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formula F can be transformed by simple variable substitution into a new formula F' such that if F has the right properties, F' can be proven in essentially the same length as F, whereas on the other hand the minimal number of lines one needs to keep in memory simultaneously in any proof of F' is lower-bounded by the minimal number of variables needed simultaneously in any proof of F. Applying this theorem to so-called pebbling formulas defined in terms of pebble games on directed acyclic graphs, we obtain our results.Comment: This paper is a merged and updated version of the two ECCC technical reports TR09-034 and TR09-047, and it hence subsumes these two report
    corecore