1,975 research outputs found

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given

    Actuating (Auto)Poiesis

    Get PDF
    This paper claims that the use of the computer as generative methodological tool for designing urban and building scenarios (when perceived systematically) is a misnomer, because the typical approach does not account for the incompleteness of computational processes. We will argue that the computerisation of architectural and urban scenarios with autopoietic and/or artificial life simulations does not account for what Edsger W. Dijkstra called “radical novelty”; and Gilles Deleuze termed “line of flight”. Typical computational methods do not open up genuine alternatives that produce radical morphologies. Our argument is predicated on the dominant notion of computation as opposed to a critique of computation per se. A critical analysis of the perception of novelty is made to support our view, and its connection with the incompleteness of axiomatic systems is explored in relation to three phases of cybernetic enquiry. Our argument draws on the ontologies of Alfred North Whitehead and Gilles Deleuze, which we utilise to reorient computational design to emphasise the potential of generating radical novelty and identify the inherent locus therein a matter of nonhuman decision-making

    A process model in platform independent and neutral formal representation for design engineering automation

    Get PDF
    An engineering design process as part of product development (PD) needs to satisfy ever-changing customer demands by striking a balance between time, cost and quality. In order to achieve a faster lead-time, improved quality and reduced PD costs for increased profits, automation methods have been developed with the help of virtual engineering. There are various methods of achieving Design Engineering Automation (DEA) with Computer-Aided (CAx) tools such as CAD/CAE/CAM, Product Lifecycle Management (PLM) and Knowledge Based Engineering (KBE). For example, Computer Aided Design (CAD) tools enable Geometry Automation (GA), PLM systems allow for sharing and exchange of product knowledge throughout the PD lifecycle. Traditional automation methods are specific to individual products and are hard-coded and bound by the proprietary tool format. Also, existing CAx tools and PLM systems offer bespoke islands of automation as compared to KBE. KBE as a design method incorporates complete design intent by including re-usable geometric, non-geometric product knowledge as well as engineering process knowledge for DEA including various processes such as mechanical design, analysis and manufacturing. It has been recognised, through an extensive literature review, that a research gap exists in the form of a generic and structured method of knowledge modelling, both informal and formal modelling, of mechanical design process with manufacturing knowledge (DFM/DFA) as part of model based systems engineering (MBSE) for DEA with a KBE approach. There is a lack of a structured technique for knowledge modelling, which can provide a standardised method to use platform independent and neutral formal standards for DEA with generative modelling for mechanical product design process and DFM with preserved semantics. The neutral formal representation through computer or machine understandable format provides open standard usage. This thesis provides a contribution to knowledge by addressing this gap in two-steps: • In the first step, a coherent process model, GPM-DEA is developed as part of MBSE which can be used for modelling of mechanical design with manufacturing knowledge utilising hybrid approach, based on strengths of existing modelling standards such as IDEF0, UML, SysML and addition of constructs as per author’s Metamodel. The structured process model is highly granular with complex interdependencies such as activities, object, function, rule association and includes the effect of the process model on the product at both component and geometric attributes. • In the second step, a method is provided to map the schema of the process model to equivalent platform independent and neutral formal standards using OWL/SWRL ontology for system development using Protégé tool, enabling machine interpretability with semantic clarity for DEA with generative modelling by building queries and reasoning on set of generic SWRL functions developed by the author. Model development has been performed with the aid of literature analysis and pilot use-cases. Experimental verification with test use-cases has confirmed the reasoning and querying capability on formal axioms in generating accurate results. Some of the other key strengths are that knowledgebase is generic, scalable and extensible, hence provides re-usability and wider design space exploration. The generative modelling capability allows the model to generate activities and objects based on functional requirements of the mechanical design process with DFM/DFA and rules based on logic. With the help of application programming interface, a platform specific DEA system such as a KBE tool or a CAD tool enabling GA and a web page incorporating engineering knowledge for decision support can consume relevant part of the knowledgebase

    Multiple viewpoint modelling framework enabling integrated product-process design

    Get PDF
    Nowadays, companies have to cope with numerous constraints at organisational and technical levels in order to improve their competitiveness edges such as productivity, efficiency, and flexibility. Integrated product-process design becomes more and more complex to manage because of increasingly customized products related to various stakeholders and concerns geographically distributed. It is still represents a huge challenge, especially in the early phases of product development process. In such a context, the management of information within integrated product-process design highlights needs in a consistent engineering model that enables product lifecycle management (PLM) integration. The paper presents a novel multiple viewpoint framework called multiple viewpoint assembly oriented, considering product design and assembly process domains in the broader context of concurrent engineering and PLM. The proposed framework describes the consistency, the propagation of information change, and mechanisms of views generation among the product lifecycle stages in order to support assembly oriented design philosophy. A new modelling language called System Modeling Language is used to describe the proposed model from a systems engineering point of view. The implementation of the model in a Web-service called PEGASUS as an application for PLM systems is describe

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Functional restructuring of CAD models for FEA purposes

    Get PDF
    International audienceDigital Mock-ups (DMUs) are widespread and stand as reference model for product description. However, DMUs produced by industrial CAD systems essentially contain geometric models and their exploitation often requires user's input data to derive finite element models (FEMs). Here, analysis and reasoning approaches are developed to automatically enrich DMUs with functional and kinematic properties. Indeed, geometric interfaces between components form a key starting point to analyse their behaviours under reference states. This is a first stage in a reasoning process to progressively identify mechanical, kinematic as well as functional properties of the components. Inferred semantics adds up to the pure geometric representation provided by a DMU and produce also geometrically structured components and assemblies. Functional information connected to a structured geometric model of a component significantly improves the preparation of FEMs and increases its robustness because idealizations can take place using components' functions and components' structure helps defining sub-domains of FEMs

    Cost estimation in initial development stages of products: an ontological approach

    Get PDF
    Cost estimation in the early stages of a product are fraught with uncertainties. The conceptual design of product development is characterized by the absence of data, the most critical being costs. The costs impact in the initial phases of the project is low, when discovered in later stages represent great risks. As there are no structured alternatives to obtaining costs in the conceptual phase, the reuse of data from past projects is an alternative discussed in the literature. Knowledge management approaches can search for data, nonexistent in the current phases, in successful earlier projects. The use of ontology is discussed as an approach in generating knowledge stored in a database. The proposed solution seeks to estimate costs based on previous projects. A query is formulated to describe the product function and settings. The ontological model searches the classes, instances, and properties in the database and generates a cost estimation. The costs of the previous project are reused to generate a new agile cost estimate without the need to consult other industry sectors. This dissertation project follows the methodological framework Design Science Research to make partial deliveries up to the final artifact, an ontological model. This proposal has great potential in the industry, considering there are no tools attending the initial phases with the same efficiency.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Estimativas de custos nas fases iniciais de um produto são repletas de incertezas. O projeto conceitual do desenvolvimento de produto e caracterizado pela ausência de dados, sendo os mais críticos os custos. O impacto dos custos nas fases iniciais do projeto e baixo, quando descobertos em fases posteriores representam grandes riscos. Como não existem meios estruturados de obtenção dos custos no projeto na fase conceitual, o reuso de dados de projetos passados e uma alternativa discutida na literatura. Abordagens de gerenciamento de conhecimento podem buscar dados, inexistentes nas fases atuais, em projetos anteriores bem sucedidos. O uso de ontologia e discutido como uma abordagem na geração de conhecimento armazenado em um banco de dados. A solução proposta busca estimar custos baseada em projetos anteriores. E formulada uma pergunta que descreva a função do produto e configurações. O modelo ontológico busca na base de dados classes, instâncias e propriedades e gera uma estimativa de custos. Os custos do projeto anterior são reutilizados para gerar uma nova estimativa de custos ágil sem necessidade de consultar outros setores da indústria. Este projeto de dissertação segue o framework metodológico Design Science Research para fazer entregas parciais ate a entrega do artefato final, um modelo ontológico. Esta proposta possui grande potencial na indústria, considerando que não existem ferramentas que atendam as fases iniciais com a mesma eficiência
    corecore