3 research outputs found

    Wide-Dynamic Range Image Sensor Prototype Based On Digital Readout Integrated Circuit

    Get PDF
    Emerging infrared and visible imaging applications require higher sensitivity, larger pixel array, larger contrast ratio (dynamic range), very low power consumption and faster data readout rate operations all at the same time. Some of these applications are camera surveillance used both in day/night (very bright and dark conditions), medical diagnostics, weather forecasting, and aerial search & rescue operations etc. The digital-pixel focal plane array (DFPA) implemented in this thesis has the capabilities to capture a wide dynamic range of more than 120dB in a single global shutter without saturating the pixels at a huge frame rate of more than 500Hz. An adaptive Integration Window technique has been developed which ensures that we are able to measure such a huge dynamic range using a counter of only 10 bits (this helps us lower the power consumption of the design). This proposed image sensor has been designed, fabricated and tested in 65nm CMOS technology. It has 16 x 16-pixel array with 16 x 9 pixels with an inbuilt Silicon APD for optical testing and 16 x 7 dummy pixels for electrical testing. Our design proposes an off-chip digital calibration technique to cut down the burden on the analog circuitry. The sensor design achieved more than 128dB+ of dynamic range with a DNL/INL of 0.65/1.65 respectively with a power consumption of only 0.58 uW/pixel. The digital calibration scheme successfully cuts down the pixel-pixel variation standard deviations by a factor of 4. The proposed image sensor design should be able to address most of the short-comings of conventional FPAs and provides a one-shot solution to the design of high performance CMOS image sensors

    Systems and Methods for the Spectral Calibration of Swept Source Optical Coherence Tomography Systems

    Get PDF
    This dissertation relates to the transition of the state of the art of swept source optical coherence tomography (SS-OCT) systems to a new realm in which the image acquisition speed is improved by an order of magnitude. With the aid of a better quality imaging technology, the speed-up factor will considerably shorten the eye-exam clinical visits which in turn improves the patient and doctor interaction experience. These improvements will directly lower associated medical costs for eye-clinics and patients worldwide. There are several other embodiments closely related to Optical Coherence Tomography (OCT) that could benefit from the ideas presented in this dissertation including: optical coherence microscopy (OCM), full-field OCT (FF-OCT), optical coherence elastography (OCE), optical coherence tomography angiography (OCT-A), anatomical OCT (aOCT), optical coherence photoacoustic microscopy (OC-PAM), micro optical coherence tomography (µ OCT), among others. In recent decades, OCT has established itself as the de-facto imaging process that most ophthalmologists refer to in their clinical practices. In a broader sense, optical coherence tomography is used in applications when low penetration and high resolution are desired. These applications include different fields of biomedical sciences including cardiology, dermatology, and pulmonary related sciences. Many other industrial applications including quality control and precise measurements have also been reported that are related to the OCT technology. Every new iteration of OCT technology has always come about with advanced signal processing and data acquisition algorithms using mixed-signal architectures, calibration and signal processing techniques. The existing industrial practices towards data acquisition, processing, and image creation relies on conventional signal processing design flows, which extensively employ continuous/discrete techniques that are both time-consuming and costly. The ideas presented in this dissertation can take the technology to a new dimension of quality of service

    Wide-Dynamic Range Image Sensor Prototype Based On Digital Readout Integrated Circuit

    Get PDF
    Emerging infrared and visible imaging applications require higher sensitivity, larger pixel array, larger contrast ratio (dynamic range), very low power consumption and faster data readout rate operations all at the same time. Some of these applications are camera surveillance used both in day/night (very bright and dark conditions), medical diagnostics, weather forecasting, and aerial search & rescue operations etc. The digital-pixel focal plane array (DFPA) implemented in this thesis has the capabilities to capture a wide dynamic range of more than 120dB in a single global shutter without saturating the pixels at a huge frame rate of more than 500Hz. An adaptive Integration Window technique has been developed which ensures that we are able to measure such a huge dynamic range using a counter of only 10 bits (this helps us lower the power consumption of the design). This proposed image sensor has been designed, fabricated and tested in 65nm CMOS technology. It has 16 x 16-pixel array with 16 x 9 pixels with an inbuilt Silicon APD for optical testing and 16 x 7 dummy pixels for electrical testing. Our design proposes an off-chip digital calibration technique to cut down the burden on the analog circuitry. The sensor design achieved more than 128dB+ of dynamic range with a DNL/INL of 0.65/1.65 respectively with a power consumption of only 0.58 uW/pixel. The digital calibration scheme successfully cuts down the pixel-pixel variation standard deviations by a factor of 4. The proposed image sensor design should be able to address most of the short-comings of conventional FPAs and provides a one-shot solution to the design of high performance CMOS image sensors
    corecore