497 research outputs found

    Towards an Information Theoretic Analysis of Searchable Encryption (Extended Version)

    Get PDF
    Searchable encryption is a technique that allows a client to store data in encrypted form on a curious server, such that data can be retrieved while leaking a minimal amount of information to the server. Many searchable encryption schemes have been proposed and proved secure in their own computational model. In this paper we propose a generic model for the analysis of searchable encryptions. We then identify the security parameters of searchable encryption schemes and prove information theoretical bounds on the security of the parameters. We argue that perfectly secure searchable encryption schemes cannot be efficient. We classify the seminal schemes in two categories: the schemes that leak information upfront during the storage phase, and schemes that leak some information at every search. This helps designers to choose the right scheme for an application

    A cryptographic cloud-based approach for the mitigation of the airline cargo cancellation problem

    Get PDF
    In order to keep in good long-term relationships with their main customers, Airline Cargo companies do not impose any fee for last minute cancellations of shipments. As a result, customers can book the same shipment on several cargo companies. Cargo companies try to balance cancellations by a corresponding volume of overbooking. However, the considerable uncertainty in the number of cancellations does not allow to fine-tune the optimal overbooking level, causing losses. In this work, we show how the deployment of cryptographic techniques, enabling the computation on private information of customers and companies data can improve the overall service chain, allowing for striking and enforcing better agreements. We propose a query system based on proxy re-encryption and show how the relevant information can be extracted, still preserving the privacy of customers\u2019 data. Furthermore, we provide a Game Theoretic model of the use case scenario and show that it allows a more accurate estimate of the cancellation rates. This supports the reduction of the uncertainty and allows to better tune the overbooking level

    Outsourced Analysis of Encrypted Graphs in the Cloud with Privacy Protection

    Full text link
    Huge diagrams have unique properties for organizations and research, such as client linkages in informal organizations and customer evaluation lattices in social channels. They necessitate a lot of financial assets to maintain because they are large and frequently continue to expand. Owners of large diagrams may need to use cloud resources due to the extensive arrangement of open cloud resources to increase capacity and computation flexibility. However, the cloud's accountability and protection of schematics have become a significant issue. In this study, we consider calculations for security savings for essential graph examination practices: schematic extraterrestrial examination for outsourcing graphs in the cloud server. We create the security-protecting variants of the two proposed Eigen decay computations. They are using two cryptographic algorithms: additional substance homomorphic encryption (ASHE) strategies and some degree homomorphic encryption (SDHE) methods. Inadequate networks also feature a distinctively confidential info adaptation convention to allow the trade-off between secrecy and data sparseness. Both dense and sparse structures are investigated. According to test results, calculations with sparse encoding can drastically reduce information. SDHE-based strategies have reduced computing time, while ASHE-based methods have reduced stockpiling expenses
    corecore