43,759 research outputs found

    TOWARDS AN EFFICIENT DECISION POLICY FOR CLOUD SERVICE PROVIDERS

    Get PDF
    Cloud service providers may face the problem of how to price infrastructure services and how this pricing may impact the resource utilization. One aspect of this problem is how Cloud service providers would decide to accept or reject requests for services when the resources for offering these services become scarce. A decision support policy called Customized Bid-Price Policy (CBPP) is proposed in this paper to decide efficiently, when a large number of services or complex services can be offered over a finite time horizon. This heuristic outperforms well-known policies, if bid prices cannot be updated frequently during incoming requests and an automated update of bid prices is required to achieve more accurate decisions. Since CBPP approximates the revenue offline before the requests occur, it has a low runtime compared to other approaches during the online phase. The performance is examined via simulation and the pre-eminence of CBPP is statistically proven

    Review of the environmental and organisational implications of cloud computing: final report.

    Get PDF
    Cloud computing – where elastic computing resources are delivered over the Internet by external service providers – is generating significant interest within HE and FE. In the cloud computing business model, organisations or individuals contract with a cloud computing service provider on a pay-per-use basis to access data centres, application software or web services from any location. This provides an elasticity of provision which the customer can scale up or down to meet demand. This form of utility computing potentially opens up a new paradigm in the provision of IT to support administrative and educational functions within HE and FE. Further, the economies of scale and increasingly energy efficient data centre technologies which underpin cloud services means that cloud solutions may also have a positive impact on carbon footprints. In response to the growing interest in cloud computing within UK HE and FE, JISC commissioned the University of Strathclyde to undertake a Review of the Environmental and Organisational Implications of Cloud Computing in Higher and Further Education [19]

    Sensing as a Service Model for Smart Cities Supported by Internet of Things

    Full text link
    The world population is growing at a rapid pace. Towns and cities are accommodating half of the world's population thereby creating tremendous pressure on every aspect of urban living. Cities are known to have large concentration of resources and facilities. Such environments attract people from rural areas. However, unprecedented attraction has now become an overwhelming issue for city governance and politics. The enormous pressure towards efficient city management has triggered various Smart City initiatives by both government and private sector businesses to invest in ICT to find sustainable solutions to the growing issues. The Internet of Things (IoT) has also gained significant attention over the past decade. IoT envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities. Today infrastructure, platforms, and software applications are offered as services using cloud technologies. In this paper, we explore the concept of sensing as a service and how it fits with the Internet of Things. Our objective is to investigate the concept of sensing as a service model in technological, economical, and social perspectives and identify the major open challenges and issues.Comment: Transactions on Emerging Telecommunications Technologies 2014 (Accepted for Publication

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • …
    corecore