18,185 research outputs found

    Nijenhuis operator in contact homology and descendant recursion in symplectic field theory

    Full text link
    In this paper we investigate the algebraic structure related to a new type of correlator associated to the moduli spaces of S1S^1-parametrized curves in contact homology and rational symplectic field theory. Such correlators are the natural generalization of the non-equivariant linearized contact homology differential (after Bourgeois-Oancea) and give rise to an invariant Nijenhuis (or hereditary) operator (\`a la Magri-Fuchssteiner) in contact homology which recovers the descendant theory from the primaries. We also sketch how such structure generalizes to the full SFT Poisson homology algebra to a (graded symmetric) bivector. The descendant hamiltonians satisfy to recursion relations, analogous to bihamiltonian recursion, with respect to the pair formed by the natural Poisson structure in SFT and such bivector. In case the target manifold is the product stable Hamiltonian structure S1×MS^1\times M, with MM a symplectic manifold, the recursion coincides with genus 00 topological recursion relations in the Gromov-Witten theory of MM.Comment: 30 pages, 3 figure

    W-types in setoids

    Full text link
    W-types and their categorical analogue, initial algebras for polynomial endofunctors, are an important tool in predicative systems to replace transfinite recursion on well-orderings. Current arguments to obtain W-types in quotient completions rely on assumptions, like Uniqueness of Identity Proofs, or on constructions that involve recursion into a universe, that limit their applicability to a specific setting. We present an argument, verified in Coq, that instead uses dependent W-types in the underlying type theory to construct W-types in the setoid model. The immediate advantage is to have a proof more type-theoretic in flavour, which directly uses recursion on the underlying W-type to prove initiality. Furthermore, taking place in intensional type theory and not requiring any recursion into a universe, it may be generalised to various categorical quotient completions, with the aim of finding a uniform construction of extensional W-types.Comment: 17 pages, formalised in Coq; v2: added reference to formalisatio

    Experimental evidence for the Volume Conjecture for the simplest hyperbolic non-2-bridge knot

    Full text link
    Loosely speaking, the Volume Conjecture states that the limit of the n-th colored Jones polynomial of a hyperbolic knot, evaluated at the primitive complex n-th root of unity is a sequence of complex numbers that grows exponentially. Moreover, the exponential growth rate is proportional to the hyperbolic volume of the knot. We provide an efficient formula for the colored Jones function of the simplest hyperbolic non-2-bridge knot, and using this formula, we provide numerical evidence for the Hyperbolic Volume Conjecture for the simplest hyperbolic non-2-bridge knot.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol5/agt-5-17.abs.htm

    Non-homogenous disks in the chain of matrices

    Full text link
    We investigate the generating functions of multi-colored discrete disks with non-homogenous boundary conditions in the context of the Hermitian multi-matrix model where the matrices are coupled in an open chain. We show that the study of the spectral curve of the matrix model allows one to solve a set of loop equations to get a recursive formula computing mixed trace correlation functions to leading order in the large matrix limit.Comment: 25 pages, 4 figure

    Hopf algebras in dynamical systems theory

    Full text link
    The theory of exact and of approximate solutions for non-autonomous linear differential equations forms a wide field with strong ties to physics and applied problems. This paper is meant as a stepping stone for an exploration of this long-established theme, through the tinted glasses of a (Hopf and Rota-Baxter) algebraic point of view. By reviewing, reformulating and strengthening known results, we give evidence for the claim that the use of Hopf algebra allows for a refined analysis of differential equations. We revisit the renowned Campbell-Baker-Hausdorff-Dynkin formula by the modern approach involving Lie idempotents. Approximate solutions to differential equations involve, on the one hand, series of iterated integrals solving the corresponding integral equations; on the other hand, exponential solutions. Equating those solutions yields identities among products of iterated Riemann integrals. Now, the Riemann integral satisfies the integration-by-parts rule with the Leibniz rule for derivations as its partner; and skewderivations generalize derivations. Thus we seek an algebraic theory of integration, with the Rota-Baxter relation replacing the classical rule. The methods to deal with noncommutativity are especially highlighted. We find new identities, allowing for an extensive embedding of Dyson-Chen series of time- or path-ordered products (of generalized integration operators); of the corresponding Magnus expansion; and of their relations, into the unified algebraic setting of Rota-Baxter maps and their inverse skewderivations. This picture clarifies the approximate solutions to generalized integral equations corresponding to non-autonomous linear (skew)differential equations.Comment: International Journal of Geometric Methods in Modern Physics, in pres
    • …
    corecore