5 research outputs found

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging.

    Full text link
    This thesis reports on the incorporation of surface information into a probabilistic simultaneous localization and mapping (SLAM) framework used on an autonomous underwater vehicle (AUV) designed for underwater inspection. AUVs operating in cluttered underwater environments, such as ship hulls or dams, are commonly equipped with Doppler-based sensors, which---in addition to navigation---provide a sparse representation of the environment in the form of a three-dimensional (3D) point cloud. The goal of this thesis is to develop perceptual algorithms that take full advantage of these sparse observations for correcting navigational drift and building a model of the environment. In particular, we focus on three objectives. First, we introduce a novel representation of this 3D point cloud as collections of planar features arranged in a factor graph. This factor graph representation probabalistically infers the spatial arrangement of each planar segment and can effectively model smooth surfaces (such as a ship hull). Second, we show how this technique can produce 3D models that serve as input to our pipeline that produces the first-ever 3D photomosaics using a two-dimensional (2D) imaging sonar. Finally, we propose a model-assisted bundle adjustment (BA) framework that allows for robust registration between surfaces observed from a Doppler sensor and visual features detected from optical images. Throughout this thesis, we show methods that produce 3D photomosaics using a combination of triangular meshes (derived from our SLAM framework or given a-priori), optical images, and sonar images. Overall, the contributions of this thesis greatly increase the accuracy, reliability, and utility of in-water ship hull inspection with AUVs despite the challenges they face in underwater environments. We provide results using the Hovering Autonomous Underwater Vehicle (HAUV) for autonomous ship hull inspection, which serves as the primary testbed for the algorithms presented in this thesis. The sensor payload of the HAUV consists primarily of: a Doppler velocity log (DVL) for underwater navigation and ranging, monocular and stereo cameras, and---for some applications---an imaging sonar.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120750/1/paulozog_1.pd

    Place Recognition and Localization for Multi-Modal Underwater Navigation with Vision and Acoustic Sensors

    Full text link
    Place recognition and localization are important topics in both robotic navigation and computer vision. They are a key prerequisite for simultaneous localization and mapping (SLAM) systems, and also important for long-term robot operation when registering maps generated at different times. The place recognition and relocalization problem is more challenging in the underwater environment because of four main factors: 1) changes in illumination; 2) long-term changes in the physical appearance of features in the aqueous environment attributable to biofouling and the natural growth, death, and movement of living organisms; 3) low density of reliable visual features; and 4) low visibility in a turbid environment. There is no one perceptual modality for underwater vehicles that can single-handedly address all the challenges of underwater place recognition and localization. This thesis proposes novel research in place recognition methods for underwater robotic navigation using both acoustic and optical imaging modalities. We develop robust place recognition algorithms using both optical cameras and a Forward-looking Sonar (FLS) for an active visual SLAM system that addresses the challenges mentioned above. We first design an optical image matching algorithm using high-level features to evaluate image similarity against dramatic appearance changes and low image feature density. A localization algorithm is then built upon this method combining both image similarity and measurements from other navigation sensors, which enables a vehicle to localize itself to maps temporally separated over the span of years. Next, we explore the potential of FLS in the place recognition task. The weak feature texture and high noise level in sonar images increase the difficulty in making correspondences among them. We learn descriptive image-level features using a convolutional neural network (CNN) with the data collected for our ship hull inspection mission. These features present outstanding performance in sonar image matching, which can be used for effective loop-closure proposal for SLAM as well as multi-session SLAM registration. Building upon this, we propose a pre-linearization approach to leverage this type of general high-dimensional abstracted feature in a real-time recursive Bayesian filtering framework, which results in the first real-time recursive localization framework using this modality. Finally, we propose a novel pose-graph SLAM algorithm leveraging FLS as the perceptual sensors providing constraints for drift correction. In this algorithm, we address practical problems that arise when using an FLS for SLAM, including feature sparsity, low reliability in data association and geometry estimation. More specifically, we propose a novel approach to pruning out less-informative sonar frames that improve system efficiency and reliability. We also employ local bundle adjustment to optimize the geometric constraints between sonar frames and use the mechanism to avoid degenerate motion patterns. All the proposed contributions are evaluated with real-data collected for ship hull inspection. The experimental results outperform existent benchmarks. The culmination of these contributions is a system capable of performing underwater SLAM with both optical and acoustic imagery gathered across years under challenging imaging conditions.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140835/1/ljlijie_1.pd
    corecore