77,689 research outputs found

    Ontological Foundations for Geographic Information Science

    Get PDF
    We propose as a UCGIS research priority the topic of “Ontological Foundations for Geographic Information.” Under this umbrella we unify several interrelated research subfields, each of which deals with different perspectives on geospatial ontologies and their roles in geographic information science. While each of these subfields could be addressed separately, we believe it is important to address ontological research in a unitary, systematic fashion, embracing conceptual issues concerning what would be required to establish an exhaustive ontology of the geospatial domain, issues relating to the choice of appropriate methods for formalizing ontologies, and considerations regarding the design of ontology-driven information systems. This integrated approach is necessary, because there is a strong dependency between the methods used to specify an ontology, and the conceptual richness, robustness and tractability of the ontology itself. Likewise, information system implementations are needed as testbeds of the usefulness of every aspect of an exhaustive ontology of the geospatial domain. None of the current UCGIS research priorities provides such an integrative perspective, and therefore the topic of “Ontological Foundations for Geographic Information Science” is unique

    Some Issues on Ontology Integration

    Get PDF
    The word integration has been used with different meanings in the ontology field. This article aims at clarifying the meaning of the word “integration” and presenting some of the relevant work done in integration. We identify three meanings of ontology “integration”: when building a new ontology reusing (by assembling, extending, specializing or adapting) other ontologies already available; when building an ontology by merging several ontologies into a single one that unifies all of them; when building an application using one or more ontologies. We discuss the different meanings of “integration”, identify the main characteristics of the three different processes and proposethree words to distinguish among those meanings:integration, merge and use

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    A Product Life Cycle Ontology for Additive Manufacturing

    Get PDF
    The manufacturing industry is evolving rapidly, becoming more complex, more interconnected, and more geographically distributed. Competitive pressure and diversity of consumer demand are driving manufacturing companies to rely more and more on improved knowledge management practices. As a result, multiple software systems are being created to support the integration of data across the product life cycle. Unfortunately, these systems manifest a low degree of interoperability, and this creates problems, for instance when different enterprises or different branches of an enterprise interact. Common ontologies (consensus-based controlled vocabularies) have proved themselves in various domains as a valuable tool for solving such problems. In this paper, we present a consensus-based Additive Manufacturing Ontology (AMO) and illustrate its application in promoting re-usability in the field of dentistry product manufacturing

    Towards Activity Context using Software Sensors

    Full text link
    Service-Oriented Computing delivers the promise of configuring and reconfiguring software systems to address user's needs in a dynamic way. Context-aware computing promises to capture the user's needs and hence the requirements they have on systems. The marriage of both can deliver ad-hoc software solutions relevant to the user in the most current fashion. However, here it is a key to gather information on the users' activity (that is what they are doing). Traditionally any context sensing was conducted with hardware sensors. However, software can also play the same role and in some situations will be more useful to sense the activity of the user. Furthermore they can make use of the fact that Service-oriented systems exchange information through standard protocols. In this paper we discuss our proposed approach to sense the activity of the user making use of software

    A visual representation of part-whole relationships in BFO-conformant ontologies

    Get PDF
    In the visual representation of ontologies, in particular of part-whole relationships, it is customary to use graph theory as the representational background. We claim here that the standard graph-based approach has a number of limitations, and we propose instead a new representation of part-whole structures for ontologies, and describe the results of experiments designed to show the effectiveness of this new proposal especially as concerns reduction of visual complexity. The proposal is developed to serve visualization of ontologies conformant to the Basic Formal Ontology. But it can be used also for more general applications, particularly in the biomedical domain
    • …
    corecore