3 research outputs found

    Towards a full higher order AD-based continuation and bifurcation framework

    Get PDF
    International audienceSome of the theoretical aspects of continuation and bifurcation methods devoted to the solution for nonlinear parametric systems are presented in a higher-order automatic differentiation (HOAD) framework. Besides benefits in terms of generality and ease of use, HOAD is used to assess fold and simple bifurcations points. In particular, the formation of a geometric series in successive Taylor coefficients allows for the implementation of an efficient detection and branch switching method at simple bifurcation points. Some comparisons with the Auto and MatCont continuation software are proposed. Strengths are then exemplified on a classical case study in structural mechanics

    A Taylor series-based continuation method for solutions of dynamical systems

    Get PDF
    International audienceThis paper describes a generic Taylor series based continuation method, the so-called Asymptotic Numerical Method, to compute the bifurcation diagrams of nonlinear systems. The key point of this approach is the quadratic recast of the equations as it allows to treat in the same way a wide range of dynamical systems and their solutions. Implicit Differential-Algebraic Equations, forced or autonomous, possibly with time-delay or fractional order derivatives are handled in the same framework. The static, periodic and quasi-periodic solutions can be continued as well as transient solutions

    Comparison of ANM and Predictor-Corrector Method to Continue Solutions of Harmonic Balance Equations

    Get PDF
    In this work we apply and compare two numerical path continuation algorithms for solving algebraic equations arising when applying the Harmonic Balance Method to compute periodic regimes of nonlinear dynamical systems. The first algorithm relies on a predictor-corrector scheme and an Alternating Frequency-Time approach. This algorithm can be applied directly also to non-analytic nonlinearities. The second algorithm relies on a high-order Taylor series expansion of the solution path (the so-called Asymptotic Numerical Method) and can be formulated entirely in the frequency domain. The series expansion can be viewed as a high-order predictor equipped with inherent error estimation capabilities, which permits to avoid correction steps. The second algorithm is limited to analytic nonlinearities, and typically additional variables need to be introduced to cast the equation system into a form that permits the efficient computation of the required high-order derivatives. We apply the algorithms to selected vibration problems involving mechanical systems with polynomial stiffness, dry friction and unilateral contact nonlinearities. We assess the influence of the algorithmic parameters of both methods to draw a picture of their differences and similarities. We analyze the computational performance in detail, to identify bottlenecks of the two methods
    corecore