6,960 research outputs found

    Embedding Non-Ground Logic Programs into Autoepistemic Logic for Knowledge Base Combination

    Full text link
    In the context of the Semantic Web, several approaches to the combination of ontologies, given in terms of theories of classical first-order logic and rule bases, have been proposed. They either cast rules into classical logic or limit the interaction between rules and ontologies. Autoepistemic logic (AEL) is an attractive formalism which allows to overcome these limitations, by serving as a uniform host language to embed ontologies and nonmonotonic logic programs into it. For the latter, so far only the propositional setting has been considered. In this paper, we present three embeddings of normal and three embeddings of disjunctive non-ground logic programs under the stable model semantics into first-order AEL. While the embeddings all correspond with respect to objective ground atoms, differences arise when considering non-atomic formulas and combinations with first-order theories. We compare the embeddings with respect to stable expansions and autoepistemic consequences, considering the embeddings by themselves, as well as combinations with classical theories. Our results reveal differences and correspondences of the embeddings and provide useful guidance in the choice of a particular embedding for knowledge combination.Comment: 52 pages, submitte

    Introducing Formalism in Economics: The Growth Model of John von Neumann

    Get PDF
    The objective is to interpret John von Neumann's growth model as a decisive step of the forthcoming formalist revolution of the 1950s in economics. This model gave rise to an impressive variety of comments about its classical or neoclassical underpinnings. We go beyond this traditional criterion and interpret rather this model as the manifestation of von Neumann's involvement in the formalist programme of mathematician David Hilbert. We discuss the impact of Kurt Gödel’s discoveries on this programme. We show that the growth model reflects the pragmatic turn of the formalist programme after Gödel and proposes the extension of modern axiomatisation to economics..Von Neumann, Growth model, Formalist revolution, Mathematical formalism, Axiomatics

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion

    A knowledge representation meta-model for rule-based modelling of signalling networks

    Full text link
    The study of cellular signalling pathways and their deregulation in disease states, such as cancer, is a large and extremely complex task. Indeed, these systems involve many parts and processes but are studied piecewise and their literatures and data are consequently fragmented, distributed and sometimes--at least apparently--inconsistent. This makes it extremely difficult to build significant explanatory models with the result that effects in these systems that are brought about by many interacting factors are poorly understood. The rule-based approach to modelling has shown some promise for the representation of the highly combinatorial systems typically found in signalling where many of the proteins are composed of multiple binding domains, capable of simultaneous interactions, and/or peptide motifs controlled by post-translational modifications. However, the rule-based approach requires highly detailed information about the precise conditions for each and every interaction which is rarely available from any one single source. Rather, these conditions must be painstakingly inferred and curated, by hand, from information contained in many papers--each of which contains only part of the story. In this paper, we introduce a graph-based meta-model, attuned to the representation of cellular signalling networks, which aims to ease this massive cognitive burden on the rule-based curation process. This meta-model is a generalization of that used by Kappa and BNGL which allows for the flexible representation of knowledge at various levels of granularity. In particular, it allows us to deal with information which has either too little, or too much, detail with respect to the strict rule-based meta-model. Our approach provides a basis for the gradual aggregation of fragmented biological knowledge extracted from the literature into an instance of the meta-model from which we can define an automated translation into executable Kappa programs.Comment: In Proceedings DCM 2015, arXiv:1603.0053

    Linear-algebraic lambda-calculus

    Full text link
    With a view towards models of quantum computation and/or the interpretation of linear logic, we define a functional language where all functions are linear operators by construction. A small step operational semantic (and hence an interpreter/simulator) is provided for this language in the form of a term rewrite system. The linear-algebraic lambda-calculus hereby constructed is linear in a different (yet related) sense to that, say, of the linear lambda-calculus. These various notions of linearity are discussed in the context of quantum programming languages. KEYWORDS: quantum lambda-calculus, linear lambda-calculus, λ\lambda-calculus, quantum logics.Comment: LaTeX, 23 pages, 10 figures and the LINEAL language interpreter/simulator file (see "other formats"). See the more recent arXiv:quant-ph/061219
    • 

    corecore