5 research outputs found

    Towards a Unified Theory of Timed Automata

    Get PDF
    Timed automata are finite-state machines augmented with special clock variables that reflect the advancement of time. Able to both capture real-time behavior and be verified algorithmically (model-checked), timed automata are used to model real-time systems. These observations have led to the development of several timed-automata verification tools that have been successfully applied to the analysis of a number of different systems; however, the practical utility of timed automata is undermined by the theories underlying different tools differing in subtle but important ways. Since algorithmic results that hold for the variant used by one tool may not apply to another variant, this complicates the application of different tools to different models. The thesis of this dissertation is this: the theory of timed automata can be unified, and a practical unified approach to timed-automata model checking can be built around the paradigm of proof search. First, this dissertation establishes the mutual expressivity of timed automata variants, thereby providing precise characterizations of when theoretical results of one variant apply to other variants. Second, it proves powerful expressive properties about different logics for timed behavior, and as a result, enlarges the set of verifiable properties. Third, it discusses an implementation of a verification tool for an expressive fixpoint-based logic, demonstrating an application of this newly developed theory. The tool is based on a proof-search paradigm; verifying timed automata involves constructing proofs using proof rules that enable verification problems to be translated into subproblems that must be solved. The tool's performance is optimized by using derived proof rules, thereby providing a theoretically sound basis for faster model checking. Last, this dissertation utilizes the proofs generated during verification to gain additional information about the vacuous satisfaction of certain formulae: whether the automaton satisfied a formula by never satisfying certain premises of that specification. This extra information is often obtained without significantly decreasing the verifier's performance

    Expressiveness Results for Timed Modal Mu-Calculi

    Full text link
    This paper establishes relative expressiveness results for several modal mu-calculi interpreted over timed automata. These mu-calculi combine modalities for expressing passage of (real) time with a general framework for defining formulas recursively; several variants have been proposed in the literature. We show that one logic, which we call Lν,μrelL^{rel}_{\nu,\mu}, is strictly more expressive than the other mu-calculi considered. It is also more expressive than the temporal logic TCTL, while the other mu-calculi are incomparable with TCTL in the setting of general timed automata

    Extensible Proof Systems for Infinite-State Systems

    Get PDF
    This article revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus in order to develop proof techniques that permit the seamless inclusion of new features in this logic. Our approach relies on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reason about the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableau method is sound and complete for timed transition systems

    Model-Based Testing of Off-Nominal Behaviors

    Get PDF
    Off-nominal behaviors (ONBs) are unexpected or unintended behaviors that may be exhibited by a system. They can be caused by implementation and documentation errors and are often triggered by unanticipated external stimuli, such as unforeseen sequences of events, out of range data values, or environmental issues. System specifications typically focus on nominal behaviors (NBs), and do not refer to ONBs or their causes or explain how the system should respond to them. In addition, untested occurrences of ONBs can compromise the safety and reliability of a system. This can be very dangerous in mission- and safety-critical systems, like spacecraft, where software issues can lead to expensive mission failures, injuries, or even loss of life. In order to ensure the safety of the system, potential causes for ONBs need to be identified and their handling in the implementation has to be verified and documented. This thesis describes the development and evaluation of model-based techniques for the identification and documentation of ONBs. Model-Based Testing (MBT) techniques have been used to provide automated support for thorough evaluation of software behavior. In MBT, models are used to describe the system under test (SUT) and to derive test cases for that SUT. The thesis is divided into two parts. The first part develops and evaluates an approach for the automated generation of MBT models and their associated test infrastructure. The test infrastructure is responsible for executing the generated test cases of the models. The models and the test infrastructure are generated from manual test cases for web-based systems, using a set of heuristic transformation rules and leveraging the structured nature of the SUT. This improvement to the MBT process was motivated by three case studies of MBT that we conducted that evaluate MBT in terms of its effectiveness and efficiency for identifying ONBs. Our experience led us to develop automated approaches to model and test-infrastructure creation, since these were some of the most time-consuming tasks associated with MBT. The second part of the thesis presents a framework and associated tooling for the extraction and analysis of specifications for identifying and documenting ONBs. The framework infers behavioral specifications in the form of system invariants from automatically generated test data using data-mining techniques (e.g. association-rule mining). The framework follows an iterative test -> infer -> instrument -> retest paradigm, where the initial invariants are refined with additional test data. This work shows how the scalability and accuracy of the resulting invariants can be improved with the help of static data- and control-flow analysis. Other improvements include an algorithm that leverages the iterative process to accurately infer invariants from variables with continuous values. Our evaluations of the framework have shown the utility of such automatically generated invariants as a means for updating and completing system specifications; they also are useful as a means of understanding system behavior including ONBs
    corecore