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Extensible Proof Systems for Infinite-State Systems

RANCE CLEAVELAND, Department of Computer Science, University of Maryland, USA

JEROEN J. A. KEIREN, Department of Mathematics and Computer Science, Eindhoven University of

Technology, The Netherlands

This article revisits soundness and completeness of proof systems for proving that sets of states in infinite-

state labeled transition systems satisfy formulas in the modal mu-calculus in order to develop proof tech-

niques that permit the seamless inclusion of new features in this logic. Our approach relies on novel results

in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic

functions over complete lattices. We show how these results may be used to reason about the sound and

complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of

our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of

systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting

tableau method is sound and complete for timed transition systems.
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1 INTRODUCTION

Proof systems provide a means for proving sequents in formal logics, and are intended to reduce
reasoning about objects in a given theory to mechanically checkable arguments consisting of ap-
plications of proof rules to the sequents in question. When a proof system is sound, every provable
sequent is indeed semantically valid; when it is complete, every semantically valid sequent can be
proved within the proof system. Because proof rules in these systems manipulate syntax, the con-
struction of proofs within them can be automated; proof assistants such as Coq [7] and Nuprl [21]
are built around this observation. Within the model-checking community, the fully automatic con-
struction of proofs based on sound and complete proof systems for decidable theories provides

Research supported by US National Science Foundation grant CNS-1446365 and US Office of Naval Research grant N00014-

17-1-2622.

Authors’ addresses: R. Cleaveland, Department of Computer Science, University of Maryland, College Park, Maryland

20742; e-mail: rance@cs.umd.edu; J. J. A. Keiren, Department of Mathematics and Computer Science, Eindhoven University

of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands; e-mail: j.j.a.keiren@tue.nl.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

1529-3785/2023/11-ART2

https://doi.org/10.1145/3622786

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 2. Publication date: November 2023.

https://orcid.org/0000-0002-4952-5380
https://orcid.org/0000-0002-5772-9527
https://doi.org/10.1145/3622786
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3622786
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3622786&domain=pdf&date_stamp=2023-11-18


2:2 R. Cleaveland and J. J. A. Keiren

a basis for establishing the correctness, or incorrectness, of systems vis à vis properties they are
expected to satisfy. In addition, proof systems can be used as a basis for different approaches to
model checking. In classical global model-checking techniques [17], one uses the proof rules to
prove properties of states with respect to larger and larger subformulas of the given formula, until
one shows that the start state(s) of the system either do, or do not, satisfy the original formula. In
local [58], or on-the-fly [8] methods, in contrast, one uses the proof rules to conduct goal-directed
reasoning from the start states and original formula, applying proof rules “in reverse” to generate
subgoals that require proving in order for the original sequents to be true. The virtue of on-the-fly
model checking is that proofs can often be completed, or be shown not to exist, without having to
examine all states and all subformulas.
Driven by applications in model checking, proof systems have been developed for establishing
that finite-state systems satisfy formulas captured in a very expressive temporal logic, the (proposi-

tional) modal mu-calculus [44]. These in turn have been used as a basis for efficient model-checking
procedures for fragments of this logic [20]. For interesting fragments of the mu-calculus, global
and on-the-fly techniques exhibit the sameworst-case complexity [20, 52], so the early-termination
feature of on-the-fly approaches does not incur additional overhead in the worst case.
Researchers have also developed sound and complete proof systems for infinite-state systems
and the modal mu-calculus [11, 13]. In this case, the sequents, instead of involving single states and
formulas in the logic as in the finite-state case, refer to potentially infinite sets of states. In general
infinite-state model checking in the modal mu-calculus is undecidable; nevertheless, specialized
proof systems for modifications of the so-called alternation-free fragment of the mu-calculus [25,
67] have been shown to lead to efficient on-the-fly model checkers for timed automata [5], a class
of infinite-state systems whose model-checking problem is decidable.
Ideally, one should be able to prove soundness and completeness of these timed-automata proof
systems using the general results for infinite-state systems and the modal mu-calculus. One should
also be able to develop checkers beyond the alternation-free fragment so that more types of prop-
erties can be processed. However, there are several obstacles to this desirable state of affairs.

(1) The intricacy of the proof system in [11] means that modifications to it in essence require
re-proofs of soundness and completeness from first principles.

(2) The proof systems for on-the-fly model checking of timed automata require several modifi-
cations to the modal mu-calculus, such as including modalities for reasoning about time and
computable proof-termination criteria to enable detecting when a proof attempt is complete.

(3) For efficiency reasons, construction of proofs in the on-the-fly model checkers must also use
different proof-construction strategies, which is an obstacle to applying reasoning from the
infinite-state mu-calculus proof system to establishing the correctness of these procedures.

These issues have limited the practical application of the proof system in [11], although its theo-
retical contribution is, rightfully, very highly regarded.
In this article, the goal is to revisit the proof system for general infinite-state systems and the
modal mu-calculus with a view toward developing new, extensible proofs of soundness and com-
pleteness that can be adapted to the inclusion of new features, such as real time, in the logic.
Concretely, our contributions are the following.
We first introduce a new notion, called a support structure, into the theory of monotonic func-
tions over the complete lattices corresponding to the powerset of a given set. These support struc-
tures permit the constructive characterizations, in a precise sense, of both the least and greatest
fixpoints of such monotonic functions. In particular, to prove that an element is in the greatest fix-
point of a function f , it suffices to ‘construct’ a set containing that element, and prove that set is a
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Extensible Proof Systems for Infinite-State Systems 2:3

post-fixpoint of f . Similarly, our support structures allow us to show an element is part of the least
fixpoint if we can construct a set containing that element, along with a well-founded ordering on
that set, satisfying a condition analogous to the set being a post-fixpoint. To the best of our knowl-
edge these results, especially in the context of least fixpoints, are new.We then use these character-
izations as a purely semantic characterization of the semantics of fixpoint formulas in the modal
mu-calculus. This allows us to avoid the introduction of infinitary syntactic constructs such as or-
dinal unfoldings that are the basis for previous formulations of the modal mu-calculus [11, 13, 59].
Explicit reasoning involving the ordinals is restricted completely to our general results involving
support structures.
We next consider a slightly modified version of the proof system of [11], and show that sound-
ness and completeness of the proof system follow from our lattice-theoretical results. In particular,
a syntactic ordering derived from [11, 13], the extended dependency ordering, is shown to induce
support structures on sets of states associatedwith fixpoint formulas in successful proofs, and from
this observation soundness of the proof system follows straightforwardly. In a similar way, given
a semantic support structure induced by our lattice-theoretical results, we show how to construct
a tableau whose extended-dependency ordering respects the given support structure. This estab-
lishes completeness. To facilitate the completeness proof, we also establish a novel notion related
to well-founded induction in the context of mutually recursive fixpoints.
Finally, we show that these results permit extensions to the mu-calculus to be easily incorpo-
rated in a soundness- and completeness-preserving manner. They also simplify reasoning about
new proof-termination criteria. To show this, we first show how a modification of the success cri-
terion of the proof system, which changes how least-fixpoint formulas are unfolded, is trivially
sound based on our earlier results. The resulting proof system is not complete in general, but is
useful for automation purposes. Second, we consider a proof system for timed transition systems
(TTSs), and a mu-calculus with two additional, timed modalities [25]. The proofs of soundness
and completeness are, indeed, straightforward extensions of our earlier results. To the best of our
knowledge, ours is also the first sound and complete proof system for checking whether sets of
states satisfy formulas in a timed modal mu-calculus.
The rest of the article develops along the following lines. In the next section, we discuss the re-
lated work. In Section 3, we review mathematical preliminaries used in the rest of the article. The
expert reader can safely skip this section on first reading, and use it for reference of the notation
and basic definitions used in this article. We then state and prove our lattice-theoretical results
in Section 4, while Section 5 introduces the syntax and semantics of the modal mu-calculus and
establishes some properties that will prove useful later in the article. We present the proof sys-
tem of [11] in Section 6. For readers intimately familiar with the mu-calculus and Bradfield and
Stirling’s proof system it is probably sufficient to skip or skim Sections 5 and 6. In Section 7, we
show that the soundness of the proof system follows from the lattice-theoretical results, and we
consider completeness in Section 8. In Sections 9 and 10, we illustrate how our new approach ac-
commodates changes to the proof system that are needed for efficient on-the-fly model checking
for timed automata and other decidable formalisms. Conclusions and future work are discussed
in Section 11. For space reasons, proofs of some results are included in the appendix; others are
sketched or elided. In the latter case, the interested reader may find full proofs of all lemmas and
theorems in [39].

2 RELATED WORK

Tableaux for proving that a single state in different classes of labeled transition systems (LTSs)
satisfies a formula in the mu-calculus have been widely studied in the literature. Larsen [47]
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2:4 R. Cleaveland and J. J. A. Keiren

describes a proof system for Hennessy-Milner logic [32] with recursion in the setting of so-called
image-finite LTSs. The logic is similar to the mu-calculus, but does not allow alternation between
fixpoints. Stirling andWalker [58] use tableaux to define a method for locally determining whether
a state in a finite-state LTS satisfies a given mu-calculus formula. Inspired by Larsen’s work, it uses
fixpoint induction to accommodate reasoning about the fixpoints in the mu-calculus. Stirling and
Walker furthermore introduce definition lists to facilitate reasoning about alternating fixpoints.
In his tableaux method implemented in the Concurrency Workbench [19], Cleaveland [18] uses
an appropriately updated set of hypotheses, instead of definition lists, to deal with fixpoints in
the setting of finite-state LTSs. Winskel [65] presents a set of inference rules that, when recast as
tableaux, are similar to Cleaveland’s, but that syntactically modify the formulas to keep track of the
hypotheses. Mader [49] describes an optimization of the tableaux method that reuses sub-tableaux.
Sokolsky and Smolka [53] give incremental algorithms for model-checking in the alternation-free
mu-calculus. A method to extract counterexamples and witnesses from tableaux was described by
Kick [40]. Tan and Cleaveland [61] and Cranen et al. [22] describe generic ways to store evidence
in the context of mu-calculus model checkers.
The approaches for finite-state LTSs are generalized to proving that potentially infinite sets of
states in infinite-state systems satisfy mu-calculus formulas by Bradfield and Stirling [10, 11, 13].
Similar to the finite-state tableaux of [58], the tableaux in these works use definition lists to termi-
nate the unfolding of fixpoint formulas as the proofs of sequents are constructed. In particular, if
a sequent is encountered whose set of states is a subset of a sequent labeled with the same defini-
tional constant appearing earlier in the proof, no unfolding performed on this sequent. This imme-
diately leads to success in case of greatest fixpoints. Success of least fixpoints is more involved, and
requires that a specific ordering on states in the companion node is well-founded. This ordering is
inferred syntactically from local state/subformula dependencies using so-called trails [10, 11] and
is also known as the extended dependency ordering [13]. The local dependencies and the extended
dependency ordering are, in turn, closely related to Streett and Emerson’s derivation and regenera-
tion relations, respectively [59]. A prototype implementation of the proof system for infinite-state
LTSs is described in [14]. Anderson [6] describes a set of inference rules in the spirit of [65] that
keep track of sets of states inside the formula, instead of using definition lists. These inference
rules explicitly provide a well-founded order on states satisfying least fixpoints, and are readily
translated into derivation rules in a tableau. Another way to explicitly give a well-founded order
on states is to associate a progress measure, as introduced by Klarlund, to every state [41]. Along
with a progress relation that requires the measure to decrease, a progress measure allows for lo-
cally checking that progress is made towards some objective such as fair termination [43] or a
so-called Liminf condition [42].
Tableaux represent just one of the methods used to address the model-checking problem for
the mu-calculus. The problem is also equivalent to checking emptiness of nondeterministic parity
automata on infinite trees [24], and to solving parity games [23] or Boolean equation systems [50].
For thorough overviews of these results and other related work, as well as an in-depth discussion
of model checking the modal mu-calculus, we refer the reader to overviews such as [12, 28, 55].
Tableaux for satisfiability and validity of the propositional modal mu-calculus have also been
widely studied. The first such proof system is described by Kozen [44]; in that article he proves
soundness and completeness for the so-called aconjunctive fragment of the mu-calculus. Com-
pleteness of an alternative proof system for the guarded fragment of the mu-calculus is proved
by Walukiewicz [63]. Later, the same author also establishes completeness of Kozen’s original
system [64] for the same fragment. Jungteerapanich [38] presents cut-free proof systems using
names for fixpoint formulas that work for the full mu-calculus. Stirling [56, 57] describes proof
systems for validity similar to those by Jungteerapanich. The proof systems mentioned so far
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assume guarded mu-calculus formulas (i.e., every recursion appears in the scope of a modality). In
terms of expressiveness this is not a restriction, since any mu-calculus formula can be translated
into guarded form, although at the cost of an exponential blow-up [15]. Friedmann and Lange [27]
present a tableau based on a new fixpoint unfolding rule that does not require this guardedness
assumption. Jäger et al. describe two infinitary proof systems,K+ω (μ ) andKω (μ ), for the modal mu-
calculus [35] whose completeness results are established without automata-theoretic arguments.
They use these proof systems to derive a cut-free and complete finite system for the same logic.
Afshari and Leigh [4] present a finitary proof system that is equivalent to infinitary proof sys-
tem Kω (μ ) from [35]; Studer [60] provides a transformation that can be used to embed the latter
into Stirling’s proof system [57] as shown in [4]. Marti and Venema [51] show that the approach
from [38, 57] can be simplified when one only considers the alternation-free fragment of the mu-
calculus. In particular, definition lists are replaced with an annotation of formulas with a single bit
of information, the focus.
The results discussed so far pertain to the propositional modal mu-calculus. Several extensions
and variations of this logic have been described in the literature. For instance, formulas can be pre-
sented equationally [20]. There are also several extensions of the mu-calculus to timed systems.
Aceto and Laroussinie present the logic L+μ,ν that extends the mu-calculus with freeze quantifica-
tion and timed modalities ∃ and ∀ (analogous to the modalities 〈−〉ϕ and [−]ϕ, respectively) [3].
Sokolsky and Smolka give an incremental algorithm for checking whether timed automata sat-
isfy formulas in what is essentially the alternation-free fragment of L+μ,ν [54]. A restriction, Lν , of

L+μ,ν in which only greatest fixpoints are allowed, was studied by Laroussinie et al. [46]. The logic
Lc extends Lν with more expressive timed modalities. Model checking and expressiveness of this
logic were examined in [9]. Larsen et al. studied the logic Ls , which restricts the use of modalities
〈−〉ϕ, ∃ϕ and disjunctions in Lν [48]. SBBL extends Ls by allowing 〈a〉true [2], and L∀S extends Ls

with an operator ∀S , with S a set of actions [1]. Henzinger et al. present the logic Tμ that extends
the mu-calculus with freeze quantification and a “next” operator � [33]. Fontana and Cleaveland
introduce relativized timed modal operators, akin to the timed until and release operators, into the
mu-calculus [25].

3 MATHEMATICAL PRELIMINARIES

This section defines basic terminology used in the sequel for finite sequences, (partial) functions,
binary relations, lattices and fixpoints, and finite trees.

3.1 Sequences

Sequences are ordered collections of elements x1 · · · xn , where each xi is taken from a given set X .

Notation 3.1 (Sequences). Let X be a set. We write X ∗ for the set of finite, possibly empty, se-
quences of elements from X . The empty sequence in X ∗ is denoted ε . We take X ⊆ X ∗, with each
x ∈ X being a single-element sequence in X ∗. Suppose #”w = x1 · · · xn ∈ X ∗, where each xi ∈ X .
Then | #”w | = n denotes the length of #”w . Note that |ε | = 0, and | #”w | = 1 if #”w = x for some x ∈ X .
If #”w 1,

#”w 2 ∈ X ∗ then #”w 1 · #”w 2 ∈ X ∗ is the concatenation of #”w 1 and
#”w 2. We often omit · and write

e.g., #”w 1
#”w 2 for

#”w 1 · #”w 2. For
#”w 1,

#”w 2 ∈ X ∗ we write #”w 1 
 #”w 2 if
#”w 1 is a (not necessarily strict)

prefix of #”w 2, and
#”w 1 �

#”w 2 if
#”w 1 is not a prefix of

#”w 2. For
#”w = x1 · · · xn ∈ X ∗ the set associated

with #”w , set( #”w ) ⊆ X , is defined to be {x1, . . . ,xn }. Note that set(ε ) = ∅, and |set( #”w ) | ≤ | #”w |. Se-
quence #”w ∈ X ∗ is duplicate-free iff | #”w | = |set( #”w ) |, and it is a permutation, or ordering, of X iff #”w is
duplicate-free and set( #”w ) = X .

Note that only finite sets can have permutations/orderings in this definition.
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2:6 R. Cleaveland and J. J. A. Keiren

3.2 Partial Functions

In this article, we make significant use of partial as well as total functions. This section introduces
our notational conventions for such functions.

Notation 3.2 (Partial Functions). Let X and Y be sets.

— Relation f ⊆ X ×Y is functional iff for all x ∈ X and y1,y2 ∈ Y , if (x ,y1) ∈ f and (x ,y2) ∈ f
then y1 = y2. When f is functional we call f a partial function from X to Y . We use X →⊥ Y
to denote the set of all partial functions from X to Y .

— Suppose f ∈ X →⊥ Y and x ∈ X . If there is y ∈ Y such that (x ,y) ∈ f then we write f (x ) as
usual to denote this y and say f is defined for x in this case. We will also write f (x ) ∈ Y to
denote that f is defined for x . If there exists no y ∈ Y such that (x ,y) ∈ f then we say that
f is undefined for x and write f (x )⊥.

— If f ∈ X →⊥ Y then we call dom( f ) = {x ∈ X | f (x ) ∈ Y } the domain of definition of f .
— f ∈ X →⊥ Y is total iff dom( f ) = X . We write X → Y as usual for the set of total functions
from X to Y . Note that X → Y ⊆ X →⊥ Y .

— If f ,д ∈ X →⊥ Y then f = д iff dom( f ) = dom(д) and for all x ∈ dom( f ), f (x ) = д(x ).

Partial functions are equal exactly when they are defined on the same elements and return the same
values when they are defined. We also use the following standard operations on partial functions.

Notation 3.3 (Function Operations). Let X and Y be sets.

— Let f ∈ X →⊥ X and i ∈ N. Then f i ∈ X →⊥ X is defined as follows: f i (x ) = x if i = 0 and
f ( f i−1 (x )) otherwise. Note that f 0 is total and that f i (x )⊥ iff f ( f j (x ))⊥ some j < i . Also
note that if f is total then so is f i for all i ≥ 0.

— Suppose f ∈ X →⊥ Y , x ∈ X and y ∈ Y . Then f [x := y] ∈ X → Y is defined as follows:
f [x := y](x ′) = y if x ′ = x , and f [x := y](x ′) = f (x ′) if x ′ � x and f (x ′) ∈ Y . Note
f [x := y] is defined for x even if f (x )⊥, and that if f is total then so is f [x := y]. This
notion can generalized to f [ #”x := #”y ], where #”x ∈ X ∗ is duplicate-free and #”y ∈ Y ∗ is such
that | #”x | = | #”y |, in the obvious fashion.

— Let f ∈ X →⊥ Y and #”w = x1 · · · xn ∈ X ∗. Then f ∈ X ∗ →⊥ Y ∗ is defined to by f ( #”w ) =
f (x1) · · · f (xn ). Note that if f (x )⊥ for any x ∈ set( #”w ) then f ( #”w )⊥.

3.3 Binary Relations

In this article, we make extensive use of the theory of binary relations, and we summarize some of
the necessary concepts in this section.
If X is a set, then a binary relation over X is a subset R ⊆ X × X . When R is a binary relation
over X we usually write x1 R x2 in lieu of (x1,x2) ∈ R and x1 �R x2 instead of (x1,x2) � R. We now
recall the following terminology.

Definition 3.4 (Preorders, Partial Orders and Equivalence Relations). Let R ⊆ X × X be a binary
relation overX .R is reflexive iff x R x for all x ∈ X .R is symmetric iff whenever x1 R x2 then x2 R x1.
R is anti-symmetric iff whenever x1 R x2 and x2 R x1 then x1 = x2. R is transitive iff whenever
x1 R x2 and x2 R x3 then x1 R x3. R is a preorder iff R is reflexive and transitive. A preorder that is
anti-symmetric, is a partial order. A symmetric preorder is called an equivalence relation.

We also use the following standard, if less well-known, definitions.

Definition 3.5 (Irreflexive and Total Relations). Let R ⊆ X ×X . Relation R is irreflexive iff for every
x ∈ X , x �R x . Relation R is a (strict) total order iff it is irreflexive and transitive and satisfies: for all
x1 � x2 ∈ X , either x1 R x2 or x2 R x1.
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A relation R over X is irreflexive iff no element in X is related to itself. It is total exactly when it
is irreflexive and transitive and any distinct x1,x2 ∈ X are comparable, one way or another, via R.
This version of totality is often called strict totality, although we drop the qualifier “strict” in this
article. The following relations are used later.

Definition 3.6 (Identity, Universal Relations). LetX be a set. The identity relation overX is defined
as IdX = {(x ,x ) | x ∈ X }. The universal relation over X is defined as UX = X × X .

We also use the following notions on binary relations.

Definition 3.7 (Relational Terminology). Let R,R′ be binary relations over X . R′ extends R iff
R ⊆ R′. ForX ′ ⊆ X , the restriction ofRwith respect toX ′ is the binary relationR�X ′ overX ′ defined
as R�X ′ = R ∩UX ′ = {(x1,x2) ∈ X ′ × X ′ | x1 R x2}. The relational composition of R and R′ is the
binary relation R ;R′ overX defined as R ;R′ = {(x1,x3) ∈ X ×X | ∃x2 ∈ X : x1 R x2∧x2 R′ x3}. The
inverse ofR is the binary relationR−1 overX defined byR−1 = {(x2,x1) ∈ X×X | x1 R x2}. IfX ′ ⊆ X
then the image, R (X ′), of R with respect to X ′ is defined by R (X ′) = {x ∈ X | ∃x ′ ∈ X ′ : x ′ R x }.
If x ∈ X then we write R (x ) in lieu of R ({x }). Similarly, the pre-image of R with respect to X ′

is the image R−1 (X ′) of R−1 with respect to X ′. The irreflexive core of R is the binary relation R−

over X defined by R− = R \ IdX . The reflexive closure of R is the binary relation R= given by
R= = R ∪ IdX . The transitive closure, R

+, of R is the least transitive relation extending R. The
reflexive and transitive closure, R∗ of R, is defined by R∗ = (R+)=.

Relation R+ is guaranteed to exist for arbitrary setX and relation R overX , and from the definition
it is immediate that R itself is transitive iff R+ = R. In addition, for any relation R ⊆ X ×X , relation
R∗ is the unique smallest preorder that extends R. The reflexive and transitive closure of a relation
induces an associated equivalence relation and partial order over the resulting equivalence classes,
as the next definition indicates.

Definition 3.8 (Quotient of a Relation). Let R ⊆ X × X be a relation. Relation ∼R is defined as
x1 ∼R x2 iff x1 R

∗ x2 and x2 R
∗ x1. If x ∈ X , the equivalence class of x is defined as [x]R = {x ′ ∈

X | x ∼R x ′}.We use QR = { [x]R | x ∈ X }. The ordering P (R) ⊆ QR × QR induced by R on QR , is
defined as P (R) = {([x]R , [x ′]R ) | x R∗ x ′}; (QR , P (R)) is called the quotient of R.

It is easy to verify that ∼R is an equivalence relation for any R, that [x]R is the equivalence class
of x with respect to ∼R , and that P (R) is a partial order over QR . Note that QR defines a partition
of set X : X =

⋃
Q ∈QR

Q , and either Q = Q ′ or Q ∩Q ′ = ∅ for any Q,Q ′ ∈ QR .
In this article, we also make extensive use of well-founded relations and well-orderings. To define
these, we first introduce the following, where we write x � x ′ ∈ X ′ when x ,x ′ ∈ X ′ and x � x ′.

Definition 3.9 (Extremal Elements). Let R ⊆ X ×X , and letX ′ ⊆ X . Element x ′ ∈ X ′ is R-minimal

in X ′ iff for all x � x ′ ∈ X ′, x �R x ′. If it is the only R-minimal element in X ′, x ′ is R-minimum in

X ′. Likewise, x ′ ∈ X ′ is R-maximal in X ′ iff for all x � x ′ ∈ X ′, x ′ �R x . If it is the only R-maximal
element in X ′, x ′ is R-maximum in X ′.
Element x ∈ X is an R-lower bound of X ′ iff for all x ′ ∈ X ′, x R x ′. If x is R-maximum of the

R-lower bounds of X ′ it is the R-greatest lower bound of X ′. Similarly, x ∈ X is an R-upper bound

of X ′ iff for all x ′ ∈ X ′, x ′ R x . If x is the R-minimum of the R-upper bounds of X ′ it is the R-least

upper bound of X ′.

In what follows we often omit R when it is clear from the context and instead write minimal
rather than R-minimal, and so forth. Note that minimal/minimum/maximal/maximum elements
for X ′ must themselves belong to X ′; this is not the case for upper and lower bounds. We can now
define well-founded relations and well-orderings.
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2:8 R. Cleaveland and J. J. A. Keiren

Definition 3.10 (Well-founded Relations, Well-orderings). LetR ⊆ X×X .R iswell-founded iff every
non-empty X ′ ⊆ X has an R-minimal element. R is well-ordering iff it is total and well-founded.

We close the section by remarking on some noteworthy properties of well-founded relations and
well-orderings.1 The first result is a well-known alternative characterization of well-foundedness.
IfX is a set and R ⊆ X ×X , call . . . ,x2,x1 an infinite descending chain in R iff for all i ≥ 1, xi+1 R xi .

Lemma 3.11 (Descending Chains and Well-foundedness). Let R ⊆ X × X . Then R is well-

founded iff R contains no infinite descending chains.

The next lemma asserts that transitive closures preserve well-foundedness, and well-founded re-
lations can be extended to well-orderings. Note that if R = ∅ the second statement reduces to the
Well-Ordering Theorem [31], which states that every set can be well-ordered.

Lemma 3.12 (Transitive Closures andTotal Extensions ofWell-founded Relations). Let

R ⊆ X × X be well-founded. Then R+ is well-founded, and there exists a well-ordering R′ ⊆ X × X
extending R.

The next result is immediate from the definition of well-ordering.

Lemma 3.13 (Minimum Elements and Well-orderings). Let R ⊆ X × X be a well-ordering.

Then every non-empty X ′ ⊆ X contains an R-minimum element.

3.4 Complete Lattices, Monotonic Functions, and Fixpoints

This article relies heavily on the theory of fixpoints of monotonic functions over complete lattices,
as developed by Tarski and Knaster [62]. We review the relevant parts of the theory here.

Definition 3.14 (Complete Lattice). A complete lattice is a tuple (X ,�,⊔,�) where: X is a set
(the carrier set); relation � is a partial order over X ; function ⊔ ∈ 2X → X , the join operation,
satisfies: for allX ′ ⊆ X ,

⊔
(X ′) is the least upper bound ofX ′; and function

�
∈ 2X → X , themeet

operation, satisfies: for all X ′ ⊆ X ,
�

(X ′) is the greatest lower bound of X ′.

In what follows we write
⊔

X ′ and
�
X ′ instead of

⊔
(X ′) and

�
(X ′).

Definition 3.15 (Fixpoint). Let X be a set and f ∈ X → X be a function. Then x ∈ X is a fixpoint

of f iff f (x ) = x .

As usual, f ∈ X → X is monotonic over complete lattice (X ,�,⊔,�) iff whenever x1 � x2,
f (x1) � f (x2). The next result follows from the Tarski-Knaster Fixpoint Theorem [62].

Lemma 3.16 (Extremal Fixpoint Characterizations). Let (X ,�,⊔,�) be a complete lattice,

and let f ∈ X → X be monotonic over this lattice. Then f has least and greatest fixpoints μ f ,ν f ∈ X ,

respectively, characterized as follows:

μ f =
�
{x ∈ X | f (x ) � x },

ν f =
⊔
{x ∈ X | x � f (x )}.

Elements x ∈ X such that f (x ) � x are sometimes called pre-fixpoints of f , while those satisfying
x � f (x ) are referred to as post-fixpoints of f .
In this article, we focus on specialized complete lattices called subset lattices.

Definition 3.17 (Subset Lattice). The subset lattice generated by set S is the tuple (2S , ⊆,⋃,⋂).

Note that for any S , the subset lattice generated by S is indeed a complete lattice.

1These results generally rely on the inclusion of additional axioms beyond the standard ones of Zermelo–Fraenkel (ZF)

set theory. The Axiom of Choice [37] is one such axiom, and in the rest of the article we assume its inclusion in ZF.
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3.5 Finite Trees

The proof objects in this article are finite trees whose nodes are labeled by sequents. In order
to reason about mathematical constructions on these proof objects we must define such trees
formally.

Definition 3.18 (Finite Non-empty Ordered Tree). A finite non-empty ordered tree is a tuple T =

(N, r,p, cs ), where: N is a finite, non-empty set of nodes; r ∈ N is the root node; p ∈ N →⊥ N, the
(partial) parent function, satisfies: p (n)⊥ iff n = r, and for all n ∈ N there exists i ≥ 0 such that
pi (n) = r; and cs ∈ N → N∗, the child-ordering function, satisfies: for all n ∈ N, cs (n) ∈ N∗ is an
ordering of {n′ ∈ N | p (n′) = n}.

In tree T = (n, r,p, cs ) each non-root node n � r has a parent node p (n) ∈ N. If p (n′) = n then
we call n′ a child of n; we use c (n) = {n′ ∈ N | p (n′) = n} to denote all the children of n. It can
be seen that cs (n) is an ordering on c (n), with the elements of c (n) listed in left-to-right order in
cs (n). If c (n) = ∅ (or equivalently, cs (n) = ε) then n is a leaf ; otherwise, it is internal. We call node
n an ancestor of node n′, and n′ a descendant of n, iff there exists an i ≥ 0 such that pi (n′) = n;
we also say in this case that there is a path from n to n′. We write A(n) and D (n) for the ancestors
and descendants of n, respectively, and note that r ∈ A(n), n ∈ D (r), n ∈ A(n) and n ∈ D (n) for
all n ∈ N. We write Tn for the subtree of T rooted at node n. The definition of subtree is standard.
We use A↑(n) = A(n) \ {n} and D↓(n) = D (n) \ {n} for the strict ancestors and descendants of n.
Finite ordered trees admit the following induction and co-induction principles.

Principle 3.19 (Tree Induction). Let T = (N, r,p, cs ) be a finite ordered tree, and let Q be a pred-
icate over N. To prove that Q (n) holds for every n ∈ N, it suffices to prove Q (n) under the as-
sumption that Q (n′) holds for every n′ ∈ D↓(n). The assumption is referred to as the induction

hypothesis.

Principle 3.20 (Tree Co-induction2). Let T = (N, r,p, cs ) be a finite ordered tree, and let Q be a
predicate over N. To prove that Q (n) holds for every n ∈ N, it suffices to prove that Q (n) holds
under the assumption that Q (n′) holds for every n′ ∈ A↑(n). The assumption is referred to as the
co-induction hypothesis.

Tree induction is an instance of standard strong induction on the height of nodes, while tree
co-induction corresponds to standard strong induction on the depth of nodes, where node height
and depth are defined in the usual manner, with the height of leaves and the depth of the root
both taken to be 0. Note that the co-induction principle also applies to discrete rooted infinite
trees [36, 45] as well as finite ones, although we do not need this fact for this article. Since the root
node r is the only node with no strict ancestors, in the co-inductive arguments given later we will
often single out a special root case for dealing with r, with reasoning about other nodes covered in
a so-called co-induction step.

4 SUPPORT STRUCTURES AND FIXPOINTS

A key contribution of this article is a novel characterization of least fixpoints for monotonic func-
tions over subset lattices. In contrast with the least-fixpoint result in Lemma 3.16 this charac-
terization may be seen as constructive in a precise sense, and relies on the notion of support

structure.

2Accounts of co-induction tend to focus on its use in reasoning about co-algebras. The treatment of finite trees in this

article is not explicitly co-algebraic, but the principle of co-induction as articulated in e.g., [34] is easily seen to correspond

to what is given here.
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Definition 4.1 (Support Structure). Let S be a set, let (2S , ⊆,⋃,⋂) be the subset lattice generated
by S , and let f ∈ 2S → 2S be a monotonic function over this lattice. Then (X ,≺) is a support

structure for f iff the following hold.

(1) X ⊆ S and ≺ ⊆ X × X is a binary relation on X .
(2) For all x ∈ X , x ∈ f (≺−1 (x )).3

Intuitively, a support structure (X ,≺) for monotonic function f contains sufficient information,
in the form of ≺−1 (x ) for each x ∈ X , to determine that each x ∈ X is also in the set f (X ).
We call a support structure (X ,≺) for monotonic f well-founded if ≺ is well-founded and say X
is (well-)supported for f in this case.

Example 4.2. Consider the subset lattice (2N, ⊆,⋃,⋂) over the set N of natural numbers, and
let < be the standard ordering on elements of N. Also let f ∈ 2N → 2N be defined as

f (S ) = {0} ∪ {n + 1 | n ∈ S }.
Note that f is monotonic with respect to the subset ordering ⊆: if S1 ⊆ S2 ⊆ N then f (S1) ⊆ f (S2).
It can be seen that both ({0},R0), where R0 = (<)�{0} is the relation < restricted to the set {0},
and (N, <) are well-founded support structures for f . Clearly both R0 and < are well-founded. To
see that the first is a support ordering, note that R−10 (0) = ∅ and f (∅) = {0}, so 0 ∈ f (R−10 (0)). For
the latter, it can be seen that for any n ∈ N, <−1 (n) = {0, 1, . . . ,n − 1}, and that n ∈ f (<−1 (n)) =
{0, 1, . . . ,n}. On the other hand, ({1, 2},R12), where R12 = (<)�{1, 2} is the restriction of relation <
to the set {1, 2}, is not a well-founded support structure for f even though R12 is well-founded. To
see why, note that R−112 (1) = ∅, and 1 � f (∅) = {0}.

The support-ordering characterization of the least fixpoint μ f of monotonic function f over a
given subset lattice relies on the following lemma, which asserts that the union of a collection of
well-supported subsets of S is also well-supported.

Lemma 4.3 (Unions ofWell-supported Sets). Let S be a set, and let f ∈ 2S → 2S be monotonic

over subset lattice (2S , ⊆,⋃,⋂). Also letW ⊆ 2S be a set of well-supported sets for f . Then
⋃W is

well-supported for f .

Proof sketch. The idea of the proof is as follows. We first orderW arbitrarily, but in a well-
founded manner. A well-founded relation for

⋃W is then constructed by taking the elements
that are less that x ∈ ⋃W from the first set inW containing x according to the ordering. The
resulting relation is then shown to induce a well-founded support structure on

⋃W . The detailed
proof is included in the appendix. �

We now have the following:

Theorem 4.4. Let S be a set, and let f ∈ 2S → 2S be a monotonic function over the subset lattice

(2S , ⊆,⋃,⋂).

(1) For all X ⊆ S , if X is well-supported for f then X ⊆ μ f .

(2) Let X = {X ⊆ S | X is well-supported for f }. Then f (
⋃X) =

⋃X.

Proof. To prove statement (1), suppose X ⊆ S is well-supported for f , and let ≺ ⊆ X × X be a
well-founded relation such that (X ,≺) is a support structure for f . Also recall that μ f =

⋂{Y ⊆
S | f (Y ) ⊆ Y }. To show that X ⊆ μ f it suffices to show that X ⊆ Y for all Y such that f (Y ) ⊆ Y .
So fix such a Y ; we prove that for all x ∈ X , x ∈ Y using well-founded induction on ≺. So fix x ∈ X .

3Recall that ≺−1 (x ) = {x ′ ∈ X | x ′ ≺ x }.
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The induction hypothesis states that for all x ′ ≺ x , x ′ ∈ Y . By definition of support structure we
know that x ∈ f (≺−1 (x )); the induction hypothesis also guarantees that ≺−1 (x ) ⊆ Y . Since f is
monotonic, f (≺−1 (x )) ⊆ f (Y ), and thus we have x ∈ f (≺−1 (x )) ⊆ f (Y ) ⊆ Y . Hence x ∈ Y .
As for statement (2), Lemma 4.3 guarantees that

⋃X is well-supported; let ≺ be a well-founded
relation over

⋃X such that (⋃X,≺) is a support structure for f . It suffices to show that f (
⋃X) ⊆⋃X and⋃X ⊆ f (

⋃X). For the former, byway of contradiction assume x is such that x ∈ f (
⋃X)

and x �
⋃X. Now consider the relation ≺′ on (

⋃X) ∪ {x } given by: ≺′ = ≺∪ {(x ′,x ) | x ′ ∈ ⋃X}.
It is easy to see that ≺′ is well-founded, and that ((

⋃X) ∪ {x },≺′) is a support structure for f .
This implies (

⋃X) ∪ {x } ⊆ ⋃X, which contradicts the assumption that x � ⋃X. To see that⋃X ⊆ f (
⋃X), note that, since (

⋃X,≺) is a support structure, x ∈ f (≺−1 (x )) and ≺−1 (x ) ⊆ ⋃X
for all x ∈ ⋃X. Since f is monotonic, we have x ∈ f (≺−1 (x )) ⊆ f (

⋃X) for all x ∈ ⋃X. �

The following corollary provides a constructive characterization of μ f in the following sense: to
establish that x ∈ μ f it suffices to construct a well-supported set X for f such that x ∈ X .
Corollary 4.5. Let f be a monotonic function over the subset lattice generated by S . Then μ f =⋃{X ∈ 2S | X is well-supported for f }.
Support structures can also be used to characterize ν f , the greatest fixpoint of monotonic func-
tion f . This characterization relies on the following observations.

Theorem 4.6. Let S be a set, let f ∈ 2S → 2S be a monotonic function over the subset lattice

(2S , ⊆,⋃,⋂), and let X ⊆ S . Then X is supported for f iff X ⊆ f (X ).

Proof. Let X ⊆ S and f be given. For the only if direction, assume X is supported for f . This
means there is a ≺ such that (X ,≺) is a support structure for f . To show that X ⊆ f (X ), fix x ∈ X .
Since (X ,≺) is a support structure for f , x ∈ f (≺−1 (x )). Since f is monotonic and ≺−1 (x ) ⊆ X , we
have x ∈ f (X ).
For the if direction, assume X ⊆ f (X ). We must come up with ≺ ⊆ X × X such that (X ,≺)
is a support structure for f . Consider ≺ = UX = X × X . Since for every x ∈ X ,x ∈ f (X ) and
≺−1 (x ) = X , we have that for every x ∈ X ,x ∈ f (≺−1 (x )), and (X ,≺) is thus a support structure
for f . �

This theorem establishes that any X ⊆ S is a post-fixpoint for monotonic f (i.e., X ⊆ f (X )) iff
X is supported for f . We also know from Lemma 3.16 that ν f =

⋃{X ⊆ S | X ⊆ f (X )}. Thus we
have the following:

Corollary 4.7. Let f be a monotonic function over the subset lattice generated by S . Then ν f =⋃{X ∈ 2S | X is supported for f }.
This section closes with definitions and results on support structures that we use later in this
article. In what followswe fix a set S and the associated subset lattice (2S , ⊆,⋃,⋂). The first lemma
establishes that any extension of a support structure is also a support structure.

Lemma 4.8 (Extensions of Support Structures). Let f ∈ 2S → 2S be monotonic, (X ,≺) be a

support structure for f , and ≺′ ⊆ S × S be an extension of ≺. Then (X ,≺′) is a support structure for

f .

Proof. Follows from monotonicity of f and the fact that ≺−1 (x ) ⊆ (≺′)−1 (x ) for all x ∈ X . �

The next lemma establishes that unions of support structures are also support structures.

Lemma 4.9 (Unions of Support Structures). Let f ∈ 2S → 2S be monotonic, and letX be a set

of support structures for f . Then (SX,≺X ) is a support structure for f , where SX =
⋃

(S,≺)∈X S , and

≺X =
⋃

(S,≺)∈X ≺.
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Proof. It suffices to show that for every s ∈ SX , s ∈ f (≺X−1 (s )). So fix such an s . Since s ∈ SX
there is (S,≺) ∈ X such that s ∈ S , and as (S,≺) is a support structure we know that s ∈ f (≺−1 (s )).
That s ∈ f (≺X−1 (s )) is immediate from the fact that f is monotonic and ≺−1 (x ) ⊆ ≺X−1 (x ). �

This result should be contrasted with Lemma 4.3. On the one hand, Lemma 4.9 asserts a property
about all sets of support structures, whereas Lemma 4.3 only refers to sets of well-supported sets.
On the other hand, Lemma 4.9 makes no guarantees about the properties of support structure
(SX,≺X ) vis à vis the orderings (S,≺). In particular, if all the (S,≺) ∈ X are well-founded, it does
not follow that ≺X is well-founded. Lemma 4.3 on the other does guarantee that a well-founded
ordering over SX does exist if each (S,≺) ∈ X is well-founded.
Well-founded support structures can be extended to well-orderings.

Lemma 4.10 (Well-orderings for Well-supported Sets). Let f ∈ 2S → 2S be monotonic,

and let (X ,≺) be a well-founded support structure for f . Then there is a well-ordering ≺′ ⊆ X × X
extending ≺ such that (X ,≺′) is a support structure for f .

Proof. Follows from Lemmas 3.12 and 4.8. �

The next result is a corollary of earlier lemmas.

Corollary 4.11 (Support Structures for Fixpoints). Let f ∈ 2S → 2S be monotonic.

(1) (ν f ,Uν f ) is a support structure for f .

(2) There is a well-ordering ≺ ⊆ μ f × μ f such that (μ f ,≺) is a support structure for f .

For technical convenience in what follows we introduce the notions of σ -compatible and σ -

maximal support structures for monotonic f and σ ∈ {μ,ν }.

Definition 4.12 (Compatible, Maximal Support Structures). Let f ∈ 2S → 2S be monotonic, let
σ ∈ {μ,ν }, and let (X ,≺) be a support structure for f .

(1) (X ,≺) is σ -compatible for f iff either σ = ν , or σ = μ and ≺ is well-founded.
(2) (X ,≺) is σ -maximal for f iff X = σ f and one of the following holds.
(a) σ = ν and ≺ = UX .
(b) σ = μ and ≺ is a well-ordering over X × X .

Corollary 4.11 ensures that for any monotonic f ∈ 2S → 2S and σ ∈ {μ,ν } there is a σ -maximal
support structure for f . When σ = ν this σ -maximal support structure is unique, whereas this
uniqueness property in general fails to hold for σ = μ; while the fixpoint is unique, the associated
well-ordering need not be.

5 THE PROPOSITIONAL MODAL MU-CALCULUS

This section defines the syntax and semantics of the modal mu-calculus and also establishes prop-
erties of the logic that will be used later in the article.

5.1 Labeled Transition Systems

LTSs are intended to model the behavior of discrete systems. Define a sort Σ to be the set of atomic
actions that a system can perform.

Definition 5.1 (LTS). An LTS of sort Σ is a pair (S,−→), whereS is a set of states and−→ ⊆ S×Σ×S
is the transition relation. We write s a−→ s ′ when (s,a, s ′) ∈ −→ and s a−→when s a−→ s ′ for some s ′ ∈ S.
If K ⊆ Σ then we write s K−→ s ′ iff s a−→ s ′ for some a ∈ K and s K−→ if s K−→ s ′ for some s ′. If there is
no s ′ such that s a−→ s ′ / s K−→ s ′ then we denote this as s �a−→ / s �K−→.
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An LTS (S,−→) of sort Σ represents a system whose state space is S; the presence of transition
s a−→ s ′ indicates that when the system is in state s , it can perform atomic action a and evolve to
state s ′. We now introduce two notions of predecessors of sets of states in an LTS.

Example 5.2. The infinite state LTS shown below is of sort Σ = {a}, with set of statesS = N∪{ω},
and the transition relation→ is such that ω a−→ n for all n ∈ N, and n + 1 a−→ n for all n ∈ N.

Definition 5.3 (Predecessor Sets). Let (S,−→) be an LTS of sort Σ, with S ⊆ S and K ⊆ Σ. Then:

(1) pred〈K 〉 (S ) = {s ∈ S | ∃s ′ ∈ S : s K−→ s ′}; and
(2) pred[K ] (S ) = {s ∈ S | ∀s ′ ∈ S : s K−→ s ′ =⇒ s ′ ∈ S }.

If state s ∈ pred〈K 〉 (S ) then it has at least one outgoing K-transition leading to a state in S , while

s ∈ pred[K ] (S ) holds iff every outgoing K-transition from s leads to S . Note that if s �K−→ then
s ∈ pred[K ] (S ) but s � pred〈K 〉 (S ). It immediately follows from the definitions that the operators
satisfy the following properties.

Lemma 5.4. Let (S,−→) be an LTS of sort Σ, with K ⊆ Σ and S1, S2 ⊆ S. If S1 ⊆ S2 then

pred[K ] (S1) ⊆ pred[K ] (S2) and pred〈K 〉 (S1) ⊆ pred〈K 〉 (S2).

5.2 Propositional Modal Mu-calculus

The propositional modal mu-calculus, which we usually just call the mu-calculus, is a logic for
describing properties of states in LTSs. The version of the logic considered here matches the one
in [11], which slightly extends [44] by allowing sets of labels in the modalities. We first define the
set of formulas of the mu-calculus, then the well-formed formulas. The latter will be the object of
study in this article.

Definition 5.5 (Mu-calculus Formulas). Let Σ be a sort and Var a countably infinite set of propo-

sitional variables. Then formulas of the propositional modal mu-calculus over Σ and Var are given
by the following grammar, where K ⊆ Σ and Z ∈ Var.

Φ ::= Z | ¬Φ′ | Φ1 ∧ Φ2 | [K]Φ′ | νZ .Φ′

We assume the usual definitions of subformula, and so forth. To define the well-formed mu-
calculus formulas, we first review the notions of free, bound and positive variables. Occurrences
ofZ in νZ .Φ′ are said to be bound; an occurrence of a variable in a formula that is not bound within
the formula is called free. A variable Z is free within a formula if it has at least one free occurrence
in the formula, and is positive in Φ if every free occurrence of Z in Φ occurs inside the scope of an
even number of negations. We now define the well-formed mu-calculus formulas as follows:

Definition 5.6 (Well-formed Mu-calculus Formulas). A mu-calculus formula over Σ and Var is
well-formed if each of its subformulas of form νZ .Φ satisfies: Z is positive in Φ. We use FΣ

Var for the
set of well-formed mu-calculus formulas over Σ and Var.

We denote substitution for free variables in the usual fashion: if Z1 · · ·Zn ∈ Var∗ is duplicate-
free and Φ1 · · ·Φn ∈ F∗ then we write Φ[Z1 · · ·Zn := Φ1 · · ·Φn] for the simultaneous capture-free
substitution of each Zi by Φi in Φ. We also use the following standard derived operators.
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Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2) 〈K〉Φ = ¬[K]¬Φ μZ .Φ = ¬νZ .¬Φ[Z := ¬Z ] tt = νZ .Z ff = ¬tt
In the definition of μZ .Φ, note that if Z is positive in Φ then it is also positive in ¬Φ[Z := ¬Z ].
Following standard convention, we refer to ∧ and ∨, [K] and 〈K〉, and ν and μ as duals. Formulas
extended with these dual operators are in positive normal form iff all negation symbols directly ap-
ply to free variable occurrences. It is well-known that every well-formed formula can be rewritten
to positive normal form when the duals are included in the logic. We refer to formulas of form
νZ .Φ or μZ .Φ as fixpoint formulas and write σZ .Φ for a generic such formula (so σ may be either
ν or μ).

Example 5.7. The following are examples of mu-calculus formulas.

(1) μX .[a]X expresses that all paths consisting of only a-actions are finite, in other words, in-
evitably, either at some point an action other than a must be done, or no action is possible.

(2) νX .μY .(〈a〉X ∨ 〈Σ \ {a}〉X ) expresses there is a path along which a happens infinitely often.
(3) μX .νY .([a]Y ∧[Σ\{a}]X ) expresses that all infinite paths eventually end with only a-actions.

We use valuations to handle propositional variables in the semantics of mu-calculus formulas.

Definition 5.8 (Valuations). Let T = (S,−→) be an LTS and Var a countably infinite set of vari-
ables. Then a valuation for Var over T is a functionV ∈ Var→ 2S .
Since a valuation V is a function, standard operations on functions such as V[Z1 · · ·Zn :=
S1 · · · Sn], where Z1 · · ·Zn ∈ Var∗ is duplicate-free and S1 · · · Sn ∈ (2S )∗, are applicable.
The semantics of the mu-calculus is now defined as follows:

Definition 5.9 (Mu-calculus Semantics). Let T = (S,−→) be an LTS of sort Σ, Var a countably
infinite set of free variables, andV ∈ Var→ 2S a valuation. Then the semantic function | | Φ | |TV ⊆
S, where Φ ∈ FΣ

Var, is defined as follows:

| | Z | |TV = V (Z ), | | ¬Φ | |TV = S \ || Φ | |
T
V ,

| | Φ1 ∧ Φ2 | |TV = | | Φ1 | |
T
V ∩ || Φ2 | |

T
V , | | [K]Φ | |TV = pred[K ]

(
| | Φ | |TV

)
,

| | νZ .Φ | |TV =
⋃
{S ⊆ S | S ⊆ || Φ | |TV[Z :=S]}.

If s ∈ || Φ | |TV then we say that s satisfies Φ in the context of T andV .
For the dual operators one may derive the following semantic equivalences.

| | Φ1 ∨ Φ2 | |TV = | | Φ1 | |
T
V ∪ || Φ2 | |

T
V , | | 〈K〉Φ | |TV = pred〈K 〉

(
| | Φ | |TV

)
,

| | μZ .Φ | |TV =
⋂
{S ⊆ S | | | Φ | |TV[Z :=S] ⊆ S }.

Example 5.10. Consider the LTS from Example 5.2. All states in this LTS satisfy the mu-calculus
formula μX .[a]X (Example 5.7 (1)), since every a-path is finite. Note that this is the case even
though ω has (countably) infinitely many outgoing a-transitions, since once an a-transition to a
particular state n is taken from ω, it only takes n transitions to end up in state 0, from which no
a-transition is possible.

We frequently wish to view formulas as functions of their free variables. The next definition
introduces this concept at both the syntactic and semantic level.

Definition 5.11 (Formula Functions). Let Z ∈ Var be a variable and Φ ∈ FΣ
Var be a formula.

(1) The syntactic function, Z .Φ ∈ FΣ
Var → F

Σ
Var, for Z and Φ is defined as

(Z .Φ)(Φ′) = Φ[Z := Φ′].
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(2) Let T = (S,−→) be an LTS of sort Σ, and V ∈ Var → 2S a valuation over T . Then the
semantic function, | | Z .Φ | |TV ∈ 2

S → 2S , for Z and Φ is defined as

| | Z .Φ | |TV (S ) = | | Φ | |TV[Z :=S].

We now state a well-known monotonicity result for formulas in which Z is positive.

Lemma 5.12 (Mu-calculus Monotonicity). Fix T = (S,−→) and V , and let Φ ∈ FΣ
Var be such

that Z ∈ Var is positive in Φ. Then | | Z .Φ | |TV ∈ 2
S → 2S is monotonic over the subset lattice for S.

It turns out that the semantics of well-formed formulas νZ .Φ and μZ .Φ with respect to T =
(S,−→) can be characterized as the greatest and least fixpoints, respectively, of | | Z .Φ | |TV over the
subset lattice induced by S. In particular, Lemma 5.12 guarantees the monotonicity of | | Z .Φ | |TV
over this lattice; Lemma 3.16 then implies the characterization. The next lemma formalizes this
insight.

Lemma 5.13 (Fixpoint Characterizations of Formula Functions). Fix T and V , let Z ∈
Var, and let Φ ∈ FΣ

Var be such that Z ∈ Var is positive in Φ. Then ν
(
| | Z .Φ | |TV

)
= | | νZ .Φ | |TV and

μ
(
| | Z .Φ | |TV

)
= | | μZ .Φ | |TV .

We now give some identities on mu-calculus formulas that we will use later in this article. The
first result establishes a correspondence between substitution and valuation updates.

Lemma 5.14 (Substitution and Valuations). Fix T and V , let Φ,Φ1, . . . ,Φn ∈ FΣ
Var and let

Z1 · · ·Zn ∈ Var∗ be duplicate-free. Then

| | Φ[Z1 · · ·Zn := Φ1 · · ·Φn] | |TV = | | Φ | |
T
V[Z1 · · ·Zn := | | Φ1 | |TV ··· | | Φn | |TV ]

.

Lemmas 5.13 and 5.14 guarantee that formulas can be unfolded.

Lemma 5.15 (Fixpoint Unfolding). Fix T and V , and let σZ .Φ be a fixpoint formula. Then

| | σZ .Φ | |TV = | | Φ[Z := σZ .Φ] | |TV .

6 BASE PROOF SYSTEM

This section defines the base proof system for the mu-calculus considered in this article. It mirrors
the ones given in [11, 13] and is intended to prove that sets of states in a transition system satisfy
mu-calculus formulas. Later in the article, we will extend this proof system in various ways. In
what follows, fix sort Σ and countably infinite propositional variable set Var.

6.1 Definition Lists and Sequents

The proof system reasons about sequents, which make statements about sets of states satisfying
mu-formulas. Our sequents also involve definition lists, which are used in the construction of proofs
to control the unfolding of fixpoint formulas. We define definition lists and sequents below.

Definition lists. Definition lists bind fresh variables in Var to formulas. In a proof setting, such
a list records the fixpoint formulas that have been unfolded previously, so that decisions about
whether or to unfold again later in the proof can be made. Here we define definition lists formally
and establish basic results about them.

Definition 6.1 (Definition Lists). A definition list Δ is a finite sequence (U1 = Φ1) · · · (Un = Φn ),
with eachUi ∈ Var and Φi ∈ FΣ

Var, satisfying the following:

(1) If i � j thenUi � Uj .
(2) For all 1 ≤ i, j ≤ n,Ui cannot appear bound anywhere in Φj .
(3) If i ≤ j thenUj cannot appear free in Φi .
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The individual (Ui = Φi ) in a definition list are sometimes called definitions, with eachUi referred
to as a definitional constant. We also define Δ(Ui ) = Φi to be the formula associated with Ui in Δ
and dom(Δ) = {U1, . . . ,Un } to be the set of definitional constants in Δ.

A definition list consists of a sequence of bindings, or definitions, of form (Ui = Φi ). The con-
straints ensure that every Ui is unique and not part of any σ operator inside Φi . Ui may appear
free in definitions to the right of (Ui = Φi ), but not in Φi or in definitions to the left. Since defi-
nition lists are sequences, the sequence notations defined in Section 3.1, including ε , · and 
, are
applicable.
Syntactically, definition lists give rise to a notion of iterated substitution.

Definition 6.2 (Formula Expansion by a Definition List). Let Δ be a definition list and Φ ∈ FΣ
Var.

Then Φ[Δ], the expansion of Φ with respect to Δ, is defined inductively on Δ as follows:

— Φ[ε] = Φ.
— Φ[Δ · (U = Ψ)] = (Φ[U := Ψ]) [Δ].

Note that Φ[Δ] contains no occurrences of any elements of dom(Δ).
In a similar vein, we may define the semantic extension,V[Δ], of valuationV by definition list

Δ. Essentially,V[Δ] updatesV with the semantic interpretation of the equations appearing in Δ.

Definition 6.3 (Valuation Extension by a Definition List). Let T = (S,−→) be an LTS over Σ,V ∈
Var → 2S a valuation, and Δ a definition list. Then V[Δ], the extension of V by Δ, is defined
inductively on Δ as follows:

(1) V[ε] = V .
(2) V[(U = Φ) · Δ] =

(
V [U := | | Φ | |TV ]

)
[Δ].

Lemma 6.4 establishes a correspondence between | | Φ[Δ] | |TV and | | Φ | |
T
V[Δ].

Lemma 6.4 (Definition-list Correspondence). Let Φ ∈ FΣ
Var. Then for every LTS T over Σ,

definition list Δ, and valuationV , | | Φ[Δ] | |TV = | | Φ | |
T
V[Δ].

Proof. Fix arbitrary Φ and LTS T over Σ. The proof proceeds by induction on Δ, and uses the
observation that, for non-empty definition list Δ = (U1 = Φ1) · Δ′ and mu-formulas Φ, we have
Φ[Δ] = (Φ[Δ′]) [U1 := Φ1]. �

We close our treatment of definition lists by showing the following useful fact about unfolding
when Δ(U ) = σZ .Φ for some Φ.

Lemma 6.5 (Definitional-constant Unfolding). Let T be an LTS over Σ, Δ be a definition list

with Δ(U ) = σZ .Φ, andV be a valuation. Then | |U | |TV[Δ] = | | Φ[Z := U ] | |
T
V[Δ].

Proof. Follows from Lemma 5.15 and the fact that | |U | |TV[Δ] = | | σZ .Φ | |
T
V[Δ]. �

Sequents. We can now define the sequents used in the base proof system.

Definition 6.6 (Sequents). Let T = (S,−→) be an LTS over Σ andV ∈ Var→ 2S a valuation over
Var. Then a sequent over T and V has form S �T ,VΔ Φ, where S ⊆ S, Δ is a definition list, and
Φ ∈ FΣ

Var has the following properties.

(1) Φ is in positive normal form.
(2) EveryU ∈ dom(Δ) is positive in Φ.
(3) NoU ∈ dom(Δ) is bound in Φ.
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Fig. 1. Proof rules for mu-calculus sequents.

We use STV for the set of sequents over T and V . If s = S �T ,VΔ Φ is in STV , then we access the
components of s as follows: st(s) = S , dl(s) = Δ, and fm(s) = Φ.

The intended interpretation of sequent S �T ,VΔ Φ is that it is valid iff every s ∈ S satisfies Φ,
where V is used to interpret free propositional variables Z � dom(Δ) that appear in Φ and Δ is
used for definitional constantsU ∈ dom(Δ) that occur in Φ. This notion is formalized as follows:

Definition 6.7 (Sequent Semantics and Validity). Let s = S �T ,VΔ Φ be a sequent in STV .

(1) The semantics of s is defined as | | s | | = | | Φ | |TV[Δ].
(2) Sequent s is valid iff S ⊆ || s | |.

6.2 Proof Rules and Tableaux

We now present the proof rules used in this article for the mu-calculus formula sequents described
in the previous section. These proof rules come from [11, 13] and resemble traditional natural-
deduction-style proof rules. Following [11, 13]; however, we write the conclusion of the proof rule
above the premises to emphasize that the conclusion is a “goal” and the premises are “subgoals” in
a goal-directed proof-search strategy. In what follows we fix sort Σ, transition system T = (S,−→)
over Σ, variable set Var and valuationV ∈ Var→ 2S .

Definition 6.8 (Proof Rule). A proof rule has form

name
s

s1 · · · sn

side condition

where name is the name of the rule, s1 · · · sn ∈ (STV )∗ is a sequence of sequents called the premises

of the rule, s ∈ STV is the conclusion of the rule, and the optional side condition is a property
determining when the rule may be applied.

Figure 1 gives the proof rules from [13], lightly adapted to conform to our notational conventions.
The rules are named for the top-level operators appearing in the formulas of the sequents to which

4HereU is fresh if it has not been previously used anywhere in a proof currently being constructed using these proof rules.
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they apply. Rule σZ is actually short-hand for two rules—one for each possible value, μ and ν , of
σ—and asserts that a definition involving fresh constantU is added to the end of the definition list
of the subgoal. The Thin rule is needed to ensure completeness of the proof system.
The side condition of Rule 〈K〉 refers to a function f that is responsible for selecting, for each
state s in the goal sequent, awitness state f (s ) such that s K−→ f (s ) and f (s ) is in the subgoal sequent.
To apply this rule, a specific function f must be identified that computes these witness states. We
call the function associated to an application of 〈K〉 the witness function of the application. We
further define the set of rule applications for a given LTS (S,−→) over Σ as follows:

RAppl = {∧,∨, [K], μZ ,νZ ,Un,Thin} ∪ {(〈K〉, f ) | f is a witness function}.

Note that rule applications are either rule names, if the rule being applied is not 〈K〉, or pairs of
form (〈K〉, f ) where f is the witness function used in applying the 〈K〉 rule. If a is a rule application
then we write rn(a) for the rule name used in a. Formally, rn(a) is defined as follows:

rn(a) =
⎧⎪⎨⎪⎩
〈K〉 if a = (〈K〉, f )

a otherwise.

Intuitively, proofs are constructed as follows. Suppose S �T ,VΔ Φ is a sequent we wish to prove.
Based on the form of Φ we select a rule whose conclusion matches this sequent and apply it,
generating the corresponding premises and witness function as required by the rule. We then
recursively build proofs for these premises. The proof construction process terminates when the
validity (or lack thereof) of the current sequent can be immediately established. The resulting
proofs can be viewed as trees, called tableaux in [11, 13], and which we formalize as follows:

Definition 6.9 ((Partial) Tableaux).

(1) A partial tableau has form T = (T, ρ,T ,V, λ), where:
— T = (N, r,p, cs ) is a finite non-empty ordered tree (cf. Definition 3.18).
— Partial function ρ ∈ N→⊥ RAppl satisfies: ρ (n)⊥ iff n is a leaf of T.
— T = (S,−→) is an LTS.
— V ∈ Var→ 2S is a valuation.
— Function λ ∈ N→ STV , the sequent labeling, satisfies: if ρ (n) ∈ RAppl then ρ (n), λ(n) and

λ(cs (n))5 satisfy the form and side condition associated with rule rn(ρ (n)).
Elements of N are sometimes called the proof nodes of T.

(2) Partial tableau (T, ρ,T ,V, λ) is a complete tableau, or simply a tableau, iff dl(λ(r)) = ε (i.e.,
the definition list in the root is empty), and all leaves n in T are terminal, i.e., satisfy one of
the following:
(a) fm(λ(n)) = Z or fm(λ(n)) = ¬Z for some Z ∈ Var \ dom(dl(λ(n))) (in this case n is called
a free leaf ); or

(b) fm(λ(n)) = 〈K〉Φ for some Φ and there is s ∈ st(λ(n)) such that s �K−→ (in this case n is
called a diamond leaf ); or

(c) fm(λ(n)) = U for someU ∈ dom(dl(λ(n))), and there ism ∈ A↑(n)6 such that fm(λ(m)) =
U and st(λ(n)) ⊆ st(λ(m)) (in this case n is called a σ -leaf ).
We sometimes refer to a σ -leaf as a μ- / ν-leaf if Δ(U ) = μ . . . / Δ(U ) = ν . . .. The deepest
node m making n a σ -leaf is the companion node of n; we also say n is a companion leaf

of m.

5Recall that cs (n) is the sequence of the children of node n in left-to-right order.
6Recall that A↑(n) is the set of strict ancestors of n.
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Aσ -leaf in a tableau has a unique companion node based on the Definition 6.9(2), but a nodemay
be a companion node for multiple (or no) companion leaves; all such companion leaves must be
in the subtree rooted at the node, however. The definition of terminal leaf in [11, 13] also includes
an extra case, st(λ(n)) = ∅, in addition to the Conditions 2(a)–2(c) in our definition above. It turns
out that this case is unnecessary, as the completeness results in Section 8 show.
In what followswe adopt the following notational shorthands for proof nodes in partial tableaux.

Notation 6.10 (Proof Nodes). Let n be a proof node in partial tableau (T, ρ,T ,V, λ).

— n = S �T ,VΔ Φ means λ(n) = S �T ,VΔ Φ.

— | | n | | = | | λ(n) | | = | | fm(λ(n)) | |TV .
— n is valid iff λ(n) is valid.
— st(n) = st(λ(n)).
— dl(n) = dl(λ(n)).
— fm(n) = fm(λ(n)).

Companion nodes and leaves feature prominently later, so we introduce the following notation
and remark on a semantic property that they satisfy.

Notation 6.11 (Companion Nodes and Leaves). Let T = (T, ρ,T ,V, λ) be a partial tableau, with
T = (N, r,p, cs ).

(1) The set CT ⊆ N of companion nodes of T is given by: CT = {n ∈ N | ρ (n) = Un}.
(2) Let n ∈ CT. Then the set CLT (n) ⊆ D↓(n) of companion leaves of n is given as follows,
where CT,n = CT ∩ D↓(n) are the companion nodes of T that are strict descendants of n.

CLT (n) = {n′ ∈ D↓(n) | c (n′) = ∅ ∧ fm(n′) = fm(n) ∧ st(n′) ⊆ st(n)} \
⋃

n′ ∈CT,n
CLT (n′).

Note that if n is a companion node then it must be the case that fm(n) = U for some definitional
constant U defined in the definition list dl(n) of n. Given a companion node n in T its associated
companion leaves, CLT (n), consist of nodes n′ that: (i) are leaves (c (n′) = ∅); (ii) have the same
definitional constant as n for their formula (fm(n′) = fm(n)); (iii) have their state sets included in
the state set of n (st(n′) ⊆ st(n)); and (iv) are not companion leaves of any companion node that
is a strict descendant of n (

⋃
n′ ∈CT,n CLT (n)).

Lemma 6.12 (Semantic Invariance of Definitional Constants). Let T = (T, ρ,T ,V, λ) be

a partial tableau. Then for any proof nodes n and n′ in T and definitional constant U , if fm(n) =
fm(n′) = U then | | n | | = | | n′ | |.

Proof. Follows from the fact that Rule σZ , which is the only rule that modifies definition lists,
introduces a given definitional constant at most once in a partial tableau, and at the end of the
associated definition list. This, plus the fact that | |U | |TV[Δ] is only influenced by the prefix of Δ up
to and including the definition ofU , gives the desired result. �

A tableau is a candidate proof; while the structure of a tableau ensures the correct application
of proof rules, this alone does not guarantee that a tableau is a valid proof. The notion of successful

tableau fills this gap.

Definition 6.13 (Successful Leaf/Tableau). Let T = (T, ρ,T ,V, λ) be a tableau. Then leaf node n

in T is successful iff one of the following holds.

(1) fm(n) = Z , where Z ∈ Var \ dom(dl(n)), and S ⊆ V (Z ); or
(2) fm(n) = ¬Z , where Z ∈ Var \ dom(dl(n))), and S ∩V (Z ) = ∅; or
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(3) n is a ν-leaf; or
(4) n is a μ-leaf satisfying the condition given below in Definition 6.17.

A tableau is successful iff all its leaves are successful.

The rest of this section is devoted to defining the success of μ-leaves, which is more complicated
than the other cases and spans several definitions. Intuitively, the success of a μ-leaf depends on
the well-foundedness of an extended dependency ordering involving the companion node of the
leaf. Our definition of this ordering closely matches similar ones in [10, 13] and is given in three
stages. In what follows, fix partial tableau T = (T, ρ,T ,V, λ), with T = (N, r ,p, cs ).
The local dependency ordering captures the one-step dependencies between a state in a node in
T and states in the node’s children.

Definition 6.14 (Local Dependency Ordering). Let n,n′ ∈ N be proof nodes in T, with n′ ∈ c (n) a
child of n. Then s ′ <n′,n s iff s ′ ∈ st(n′), s ∈ st(n), and one of the following hold:

(1) ρ (n) = [K] and s K−→ s ′; or
(2) ρ (n) = (〈K〉, f ) and s ′ = f (s ); or
(3) rn(ρ (n)) � {[K], 〈K〉} and s = s ′.
Note that since n′ ∈ c (n), node n is internal and ρ (n) is defined.

We next extend the local dependency ordering to capture dependencies between states in a node
and states in descendants of the node.

Definition 6.15 (Dependency Ordering). Let n,n′ be proof nodes in T. Then s ′�n′,n s iff s
′ ∈ st(n′),

s ∈ st(n), and one of the following holds.

(1) n = n′ and s = s ′, or
(2) There exist proof node m and s ′′ ∈ st(m) with s ′ �n′,m s ′′ and s ′′ <m,n s .

The definition of �n′,n is inductive, and may be seen as analogous to the transitive and reflexive
closure of <n′,n, modulo the node indices n′ and n decorating �n′,n. It is easy to see that if s

′ <n′,n s
then s ′ �n′,n s , and that if s

′ �n′,n s then n′ ∈ D (n).7

In the third and final of our definitions, we allow cycling through states in companion nodes
that are descendants of a given node.

Definition 6.16 (Extended Dependency Ordering). The extended dependency ordering, <:n′,n, and
the companion-node ordering, <:m, are defined mutually recursively as follows:

(1) Let m ∈ CT be a companion node, with s, s
′ ∈ st(m). Then s ′ <:m s iff there is a companion

leaf m′ ∈ CLT (m) with s ′ ∈ st(m′) and s ′ <:m′,m s .
(2) Let n,n′ be proof nodes in T. Then s ′ <:n′,n s iff s ′ ∈ st(n′), s ∈ st(n) and one of the following
holds.
(a) s ′ �n′,n s; or
(b) there exists m ∈ CT, with m � n and m � n′, and t , t ′ ∈ st(m), such that: s ′ <:n′,m t ′,

t ′ <:+m t ,8 and t �m,n s .

Intuitively, s ′ <:n′,n s captures the following semantic dependency: s ′ <:n′,n s if the proof that
s is in the semantics of fm(n) depends on the fact that s ′ is in the semantics of fm(n′). If n′ is a
companion leaf of n, this means that in order to prove that s is in the fixed point of the formula

7Recall that D (n) are descendants of n; see Section 3.5.
8Recall that if R is a binary relation then R+ is the transitive closure of R .
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associated with fm(n), it is also required that s is in the fixed point of fm(n) (note that since n′ is a
companion leaf of n it must be the case that fm(n′) = fm(n)). Recall that the states in a companion
leaf are also in the leaf’s companion node; consequently, if there is a dependency involving a state
in the companion node and another state in one of the node’s companion leaves. This is used in
the first part of the definition to define the ordering <:m on companion nodes.
For the ordering <:n′,n, the first case in the definition indicates that this relation holds if applying
a sequence of proof rules starting at n leads to n′, with the rules [K] and 〈K〉 inducing state changes
in the dependency relation as the rules are applied. In the second case, the dependency chain can
cycle through a companion node if there is a dependency chain from the companion node to one of
its companion leaves (this is captured in the relation <:+m). The dependency can be extended with
a dependency involving the second state, but starting from the companion node. This explains the
appearance of the transitive-closure operation in this case.
The success criterion for μ-leaves (which is really a condition on the companion nodes for these
leaves) in a complete tableau can now be given as follows.

Definition 6.17 (Successful μ-leaf). Let n′ be a μ-leaf in tableau T and let n be the companion
node of n′. Then n′ is successful if and only if <:n is well-founded.

Note that this definition implies that either all μ-leaves having the same companion node are
successful, or none are.

Example 6.18. We now revisit our running example, with the infinite-state LTS T , from
Example 5.2, and the mu-calculus formula μX .[a]X . We prove that all states in the LTS satisfy
the formula using the proof system. Fix some arbitrary valuation V (since the formula does not
contain any free variables, this valuation is not used in the proof).

μZ
n0 = N ∪ {ω} �T ,Vε μX .[a]X

Un
n1 = N ∪ {ω} �T ,V(U=μX .[a]X )

U

[a]
n2 = N ∪ {ω} �T ,V(U=μX .[a]X )

[a]U

n3 = N �T ,V(U=μX .[a]X )
U

Note that n3 is a leaf-node in the tableau, with companion node n1. The local dependency orderings
are as follows: s <n1,n0 s and s <n2,n1 s for all s ∈ N ∪ {ω}; s <n3,n2 ω and s <n3,n2 (s + 1) for all
s ∈ N. This results in dependency ordering s �n3,n1 ω and s �n3,n1 (s + 1) for all s ∈ N. Since
there are no nested companion nodes, <:n1= �n3,n1 is the companion node ordering on node n1.
The intuition behind this ordering is that in order to prove that a state s satisfies U (in node n1),
we also need to establish that all states s ′ <:n1 s satisfyU (in node n1).
It is easy to see that this ordering is well-founded, and thus that leaf n3 is a successful μ-leaf and
the tableau is successful.

The following lemma establishes pseudo-transitivity properties of the dependency relations�n′,n

and <:n′,n. Generally speaking, we would not expect these to be transitive, because e.g., when
s ′ �n′,n s holds, s

′ and s may belong to different sets (namely, the sets of states in their respective
proof nodes). However, if we allow the node labels on the relations to align properly, we do have a
property that resembles transitivity. The proof of the lemma follows by induction on the definitions.
The full proof is included in the appendix.

Lemma 6.19 (Pseudo-transitivity of �n′,n and <:n′,n). Let n1,n2 and n3 be proof nodes in

partial tableau T. The following holds.
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(1) If s3 �n3,n2 s2 and s2 �n2,n1 s1, then s3 �n3,n1 s1.
(2) If s3 <:n3,n2 s2 and s2 �n2,n1 s1, then s3 <:n3,n1 s1.
(3) If s3 <:n3,n2 s2 and s2 <:n2,n1 s1, then s3 <:n3,n1 s1.

We now formalize a semantic property, which we call semantic sufficiency, enjoyed by the local
dependency relation <n′,n for internal node n. This property asserts that if for every s ∈ st(n),
and every s ′ such that that s ′ <n′,n s , s ′ belongs to the semantics of n′, then this is sufficient to
conclude that s belongs to the semantics of n.

Lemma 6.20 (Semantic Sufficiency of <n′,n). Let n be an internal proof node in partial tableau

T, and let s ∈ st(n) be such that for all s ′ and n′ with s ′ <n′,n s , s ′ ∈ | | n′ | |. Then s ∈ || n | |.

Proof. Let n be an internal node in T = (T, ρ,T ,V, λ). Since n is internal, ρ (n) is defined. Now
assume s ∈ st(n); the proof proceeds by a straightforward case analysis on ρ (n). �

7 SOUNDNESS USING SUPPORT STRUCTURES

In this section we prove soundness of the proof system in the previous section by showing that for

any successful tableau whose root is labeled by sequent s = S �T ,Vε Φ, sequent smust be valid. Our
proof relies on establishing that the transitive closure, <:+m, of the companion-node dependency
relation (Definition 6.16) used to define the success of μ-leaves is a σ -compatible support structure
for the semantic functions associated with fixpoint nodesm. Our reliance on support structures for
soundness stands in contrast to Bradfield’s and Stirling’s soundness proof for essentially this proof
system [11, 13], which relies on infinitary logic and the introduction of (infinite) ordinal-unfoldings
of fixpoint formulas in particular. Since our ultimate goal in this article is to reason about timed
extensions of the modal mu-calculus, we have opted for a different proof strategy that is based
more on semantic rather than syntactic reasoning. We also note that our use of support structures
is likely to enable the study of other success criteria besides <:m, which is especially interesting
for adaptations of this proof system to other settings, such as ones in which formulas are defined
equationally or in which less aggressive use is made of formula unfolding than is the case here.
Our proof of soundness proceeds in four steps.

(1) We show (Section 7.1) that tableau rules are locally sound, i.e., that when the child nodes of
a proof node are valid, then the node itself is also valid.

(2) We wish to be able to reason using tree induction about the meanings of proof nodes and
the formulas in those nodes. This reasoning is sometimes impeded because, due to unfold-
ing, many nodes have the same formulas in them. To address this problem, we show how
syntactically distinct node formulas can be constructed in a semantics-preserving fashion for
nodes in a proof tree based on the structure of the proof tree. This material is in Section 7.2.

(3) We then prove that for companion nodesm in a tableau, the ordering <:+m is a support struc-
ture for the semantic function associated with its node formula. This is done in Section 7.3.

(4) In Section 7.4, we combine the previous three results to obtain soundness for the proof sys-
tem: if there is a successful tableau whose root sequent s is such that dl(s) = ε then s is
valid.

7.1 Local Soundness

We call a proof system like ours locally sound if for every internal node n in any partial tableau,
the validity of all the children of n implies the validity of n. This may be proven as follows:

Lemma 7.1 (Local Soundness). Let n be an internal proof node in partial tableau T. Then n is

valid if all its children are valid.
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Proof. Let T = (T, ρ,T ,V, λ), with T = (N, r,p, cs ), be a partial tableau with internal node n,
and assume that for each n′ ∈ c (n), node n′ is valid. To establish that n is valid, we must show
that st(n) ⊆ || n | |. To do so, we fix s ∈ st(n) and show that s ∈ || n | |. In support of this, consider
arbitrary s ′,n′ such that s ′ <n′,n s in T. By definition of <n′,n it follows that n′ ∈ c (n) and that
s ′ ∈ st(n′). Moreover, since n′ is valid it follows that s ′ ∈ | | n′ | |; since this holds for all such s ′ and
n′, Lemma 6.20 ensures that s ∈ || n | |. �

7.2 Node Formulas

We now show how to associate a formula P (n) with every node n in a tableau so that the structure
of P (n) is based on the structure of the sub tableau rooted at n and P (n) is disentangled from the
definition list of n. We then show that these formulas are semantically equivalent to the formulas
embedded in the nodes’ sequents in a precise sense. Since our definition is inductive on the struc-
ture of the tableau rooted at n, this facilitates proofs over the semantics of formulas using tree
induction.
In the remainder of this section we fix sort Σ, LTS T = (S,−→) over Σ, valuationV ∈ Var→ 2S ,
and tableau T = (T, ρ,T ,V, λ), with T = (N, r,p, cs ). We also recall the definition of CT — the
companion nodes of T — and fix the definitions of the following sets:

U =
⋃

n∈N
dom(dl(n)),

CT′ = N′ ∩ CT for subtree T′ = (N′, . . .) of T,

CT′ (U ) = {n ∈ CT′ | fm(n) = U } for subtree T′ = (N′, . . .) of T and U ∈ U.
Set U contains all the definitional constants appearing in T, while CT′ contains the companion
nodes of T in subtree T′ of T. Set CT′ (U ) consists of the companion nodes of T in subtree T′ whose
formula is U ∈ U. For subtree Tn rooted at node n, note that CTn

⊆ CT = CT. Also, if ρ (n) = Un
with c (n) = n′, then CTn

= CTn′ ∪ {n}. Lemma 6.12 and the definition of | | n | | guarantee, for all
U ∈ U and n,n′ ∈ CT (U ), that | | n | | = | | n′ | |; we write | |U | |

T
for this common value associated

withU . We now define P (−) as follows:

Definition 7.2 (Node Formulas). For each companion node m ∈ CT let Zm be a unique fresh
variable, with VarT = {Zm | m ∈ CT} the set of all such variables. Then for n ∈ N formula P (n) is
defined inductively as follows:

(1) If n is a free leaf (cf. Definition 6.9(2(a))) then P (n) = fm(n).
(2) If n is a 〈K〉-leaf then P (n) = (fm(n))[dl(n)].
(3) If n is a σ -leaf with companion node m then P (n) = Zm.
(4) If ρ (n) = ∧ and cs (n) = n1n2 then P (n) = P (n1) ∧ P (n2).
(5) If ρ (n) = ∨ and cs (n) = n1n2 then P (n) = P (n1) ∨ P (n2).
(6) If ρ (n) = [K] and cs (n) = n′ then P (n) = [K](P (n′)).
(7) If ρ (n) = (〈K〉, f ) and cs (n) = n′ then P (n) = 〈K〉(P (n′)).
(8) If ρ (n) = σZ and cs (n) = n′ then P (n) = P (n′).
(9) If ρ (n) = Thin and cs (n) = n′ then P (n) = P (n′).

(10) If ρ (n) = Un, n = S �T ,VΔ U , Δ(U ) = σZ .Φ and cs (n) = n′ then P (n) = σZn. (P (n′)).

When n is a free leaf (case 1) fm(n) contains no definitional constants, and thus, (fm(n))[dl(n)] =
fm(n) = P (n). Also, when ρ (n) = Un (case 10), n ∈ CT is a companion node in T. Thus, P associates
a syntactically distinct formula to each companion node in T.
Intuitively, P (n) can be seen as the formula whose “parse tree” is the sub-tableau of T rooted at

n. The construction works bottom-up from the leaves that are descendants of n, using the proof
rule labeling each internal node to recursively construct formulas from those associated with the
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node’s children. Each companion node is converted into a σ -formula, with a freshly generated
bound variable that P (−) ensures is assigned to each companion leaf of the companion node. It is
easy to see that P (−) contains no instances of any U ∈ U.

Example 7.3. The node formulas corresponding to the proof tree from Example 6.18 are P (n3) =
Zn1 , P (n2) = [a]Zn1 , and P (n0) = P (n1) = μZn1 .[a]Zn1 .

We now turn to establishing a semantic equivalence between | | P (n) | |TV′ for certain V
′ and

| | n | | in T by first defining the following notion of valuation consistency with T.

Definition 7.4 (Valuation Consistency). Let VarT be as given in Definition 7.2, and let V be the
valuation in tableau T. Then valuationV′ is consistent with tableau T iff

— for every U ∈ U and m ∈ CT (U ),V′(Zm) = | |U | |
T
, and

— for every variable X ∈ Var \ VarT,V′(X ) = V (X ).

Intuitively, V′ is consistent with T iff it assigns the semantics of the associated definitional con-
stant to every fresh variable used in the definition of P (−), and to all other variables it assigns the
same value as valuationV in T. The following result is immediate from the definitions.
Lemma 7.5. LetV′ be a valuation consistent with T. Then for all n ∈ N such that fm(n) = Φ and

dl(n) = Δ, | | n | | = | | Φ[Δ] | |TV′ .

Proof. Suppose n = S �T ,VΔ Φ; we must show that | | n | | = | | Φ[Δ] | |TV′ . By definition, | | n | | =
| | Φ | |TV[Δ]. Lemma 6.4 then guarantees that | | Φ | |

T
V[Δ] = | | Φ[Δ] | |

T
V , and asV andV

′ only disagree

on definitional constants in T that do not appear free in Φ[Δ], we have that | | n | | = | | Φ[Δ] | |TV′ . �

We now prove that | | n | | = | | P (n) | |TV′ for proof node n in T and V′ consistent with T. This
fact establishes that P (n) summarizes all relevant information about the semantics of n, modulo
the connection made byV′ between definitional constants in n and the associated free variables
introduced by P (−). The proof is split across two lemmas; we first consider the special case when
n ∈ CT is a companion node, and then use this result to prove the general case.

Lemma 7.6 (Companion-node Formulas and Semantics). LetV′ be a valuation that is consis-

tent with tableau T. Then for every m ∈ CT, | | P (m) | |TV′ = | |m | |.

Proof. For any valuationV′ we call a syntactic transformation of Φ to Γ semantics-preserving

forV′ iff | | Φ | |TV′ = | | Γ | |
T
V′ . LetV

′ be consistent with T. We prove the following stronger result:

for anym ∈ CT withm = S �T ,VΔ U and Δ(U ) = σZ .Φ, there is a semantics-preserving
transformation of P (m) to (σZ .Φ)[Δ] forV′.

The proof of this result proceeds by strong induction on |CTm
|, the number of companion nodes

contained in the subtree Tm of T rooted at companion node m. Using this result, one can then
establish that | | P (m) | |TV′ = | | σZ .Φ | |

T
V[Δ] = | |m | |. �

The next lemma extends the previous one, which focused only on companion nodes, to all nodes.

Lemma 7.7 (Node Formulas and Node Semantics). LetV′ be a consistent valuation for tableau

T. Then for every n ∈ N, | | P (n) | |TV′ = | | n | |.

Proof. The proof proceeds by induction on T, the tree embedded in T. The case where ρ (n) =
Un follows from Lemma 7.6. �

The final corollary asserts that when the definition list in a proof node is empty, there is no need
to make special provision for consistent valuations.
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Corollary 7.8. Let n ∈ N be such that dl(n) = ε . Then | | n | | = | | P (n) | |TV .

Proof. Fix n ∈ N such that dl(n) = ε . Based on Lemma 7.7 we know for any valuationV′ that
is consistent with T, that | | P (n) | |TV′ = | | n | |. It may also be seen that no Z

′ ∈ VarT can be free
in P (n), and since V′ is consistent with T we have that | | P (n) | |TV′ = | | P (n) | |TV . Consequently,
| | n | | = | | P (n) | |TV . �

7.3 Support Orderings for Companion Nodes

As the next step in our soundness proof, we establish that for all companion nodes n in the tableau,
(st(n), <:+n ), where <:+n is the transitive closure of the extended dependency ordering on n, is a
support structure for a semantic function derived from P (n). This fact is central in the proof of
soundness, as it establishes a key linkage between the tableau-based ordering <:+n and the semantic
notion of support structure.
In order to prove this result about <:+n we first introduce a derived dependency relation, which
we call the support dependency ordering (notation ≤:m,n). This ordering is based on the extended
dependency ordering <:m,n, but it allows dependencies based on cycling through node n first, in
case n is a companion node. Specifically, the support dependency ordering captures exactly the
dependencies guaranteeing that s is in the semantics of n if for every s ′,m with s ′ ≤:m,n s , state s ′

is in the semantics of m. If n is a node in which the unfolding rule has been applied, to show that
s is in the semantics of n, we may require to first show that s ′ is in the semantics of n. This is not
captured by the relation <:m,n, which does not take the dependencies within node n into account.

Definition 7.9 (Support Dependency Ordering). Let m,n ∈ N be proof nodes in T. The support

dependency ordering, ≤:m,n is defined as follows:

≤:m,n=
⎧⎪⎨⎪⎩
<:m,n ; <:

∗
n if ρ (n) = Un

<:m,n otherwise.

Example 7.10. Reconsider the proof system of our running example. In Example 6.18, we com-
mented on the orderings. The support dependency ordering ≤:n3,n1 for this example is as follows:
s ≤:n3,n1 ω, for all s ∈ N, and for all s1 ∈ N, and s2 < s1 (where < is the ordering on natural
numbers), s2 ≤:n3,n1 s1. This captures that, in order to prove that ω is in the semantics of node
n1, all natural numbers need to be in the semantics of node n3. Likewise, for state 2 to be in the
semantics of n1, states 0 and 1 need to be in the semantics of n3. Note that in order to establish that
0 ≤:n3,n1 2, we use that 0 <:n3,n1 1, and 1 <:∗n1 2. Also, observe that ≤:n3,n0 is the same as ≤:n3,n1 .

We now remark on some properties of ≤:m,n that will be used below. We first note that ≤:m,n

extends <:m,n (as well as <m,n and �m,n, since <:m,n extends both of these relations): for all s, s
′, if

s ′ <:m,n s then s ′ ≤:m,n s . Also, if n is a companion node (i.e., ρ (n) = Un) then the transitivity of
<:∗n guarantees that ≤:m,n = (≤:m,n ; <:

∗
n), as in this case

≤:m,n = (<:m,n ; <:
∗
n) = (<:m,n ; <:

∗
n ; <:

∗
n) = (≤:m,n ; <:

∗
n).

From the definition of <:m,n (cf. Definition 6.16) we have that if m = n then <:m,n= Idst(n) is the
identity relation over st(n). From this fact we can make the following observations. First, ifm = n

and n is not a companion node, then ≤:m,n = <:m,n is the identity relation over st(n). Second, if
m = n and n is a companion node then ≤:m,n is <:

∗
n, the reflexive and transitive closure of the

companion node ordering for n.
Relation ≤:m,n also enjoys a pseudo-transitivity property.

Lemma 7.11 (Pseudo-transitivity of ≤:m,n). Let n1,n2, and n3 be proof nodes in partial tableau

T, and assume s1, s2, and s3 are such that s3 ≤:n3,n2 s2 and s2 ≤:n2,n1 s1. Then s3 ≤:n3,n1 s1.
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In the remainder of this sectionwewish to establish that for any companion node n in successful
tableau T, <:+n is a support structure for a function derived from P (n). In order to define this
function, we must deal with the free variables embedded in P (n). In particular, ifm is a companion
node that is a strict ancestor of n then variable Zm may appear free in P (n); this would be the case
if any of the companion leaves ofm are also descendants of n. To accommodate these free variables
in P (n) we will define a modification of valuation V that assigns sets of states to these variables
based on the <:m′,n relation, where m′ is a companion leaf of m that is also a descendant of n.

Definition 7.12 (Influence Extensions of Valuations). Let T = (T, ρ,T ,V, λ) be a tableau, with
m1 · · ·mk an ordering on the companion nodes CT of T. Also let n be a node in T, with S = st(n)
the states in n. We define the following:

(1) CLmi ,n = CLT (mi ) ∩ D (n) is the set of companion leaves of mi that are also descendants
of n.

(2) The set of states in companion leaves of mi that influence state s in n is given as follows:

Sn,s,mi
=

⋃

m′ ∈CLmi ,n

(≤:m′,n)−1 (s ).

We also define
Sn,mi

=
⋃

s ∈S
Sn,s,mi

to be the set of states in companion leaves of mi that influence n.
(3) The influence extension ofV for state s in node n is defined as

Vn,s = V[Zm1 · · ·Zmk
= Sn,s,m1 · · · Sn,s,mk

].

Similarly
Vn = V[Zm1 · · ·Zmk

= Sn,m1 · · · Sn,mk
]

is the influence extension ofV for node n.

Intuitively, Sn,s,mi
contains all the states in the companion leaves of mi at or below node n

that influence the determination that state s belongs in node n. Note these definitions also set
Vn,s (Zmi

) = ∅ in case node mi has no companion leaves that are descendants of n; when this
happens Zmi

cannot appear free in P (n). Also note that Zmi
does not appear free in P (n) if mi

is a descendant of n, as P (mi ) = σZmi
.Φ′ for some Φ′ is a subformula of P (n) and contains all

occurrences of Zmi
in P (n). In both cases the value assigned to Zmi

by Vn,s does not affect the
semantics of P (n).

Example 7.13. Consider the proof tree from Example 6.18.We described the support dependency
ordering in Example 7.10. The set of states in the companion leaves of n1 in the tree (rooted at n0)
that influence state ω are Sn0,ω,n1 = (≤:n3,n0 )−1 (ω) = N. The set Sn1,ω,n1 is the same. The influence
extensions for state ω areVn0,ω = Vn1,ω = V[Zn1 = Sn0,ω,n1 ] = V[Zn1 = N].

We now state a technical but useful lemma about dependency extensions.

Lemma 7.14 (Monotonicity of Extensions). Let T = (T, ρ,T ,V, λ) be a tableau with nodes n

and n′ and states s and s ′ such that s ′ <n′,n s . Then:

(1) for all Z ∈ VarT,Vn′,s ′ (Z ) ⊆ Vn,s (Z ), and

(2) for all Z ∈ Var \ VarT,Vn′,s ′ (Z ) = Vn,s (Z ).

Proof. Follows from the definition ofVn,s and the fact that the definition of <n′,n ensures that
n′ ∈ c (n) and thus D (n′) ⊆ D (n). Consequently CLmi ,n′ ⊆ CLmi ,n for all mi ∈ CT, and s

′ <n′,n s
guarantees that Sn′,s ′,mi

⊆ Sn,s,mi
. �
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The next corollary is an immediate consequence of this lemma and the fact that every occurrence
of any Zm ∈ VarT in P (n′) must be positive.

Corollary 7.15. Let T = (T, ρ,T ,V, λ) be a tableau, with n and n′ and states s and s ′ such that

s ′ <n′,n s . Then | | P (n) | |TVn′,s′
⊆ | | P (n) | |TVn′,s

.

We now state and prove the main lemma of this section, which is that for any companion node
n in a successful tableau, <:+n is a support structure for a semantic function derived from P (n).

Lemma 7.16 (<:+n is a Support Structure). Let T = (T, ρ,T ,V, λ) be a successful tableau, with

n ∈ CT a companion node of T and n′ the child of n in T. Also let S = st(n). Then (S, <:+n ) is a support

structure for | | Zn.P (n′) | |TVn
.

Proof. Fix successful tableau T = (T, ρ,T ,V, λ), with T = (N, r,p, cs ), and let n ∈ CT be a
companion node of T with S = st(n). We prove the following statements for all m ∈ D (n) and
s ∈ S ; this implies the lemma.
S1. For all x such that x ≤:m,n s , x ∈ || P (m) | |TVm,x

.

S2. If m ∈ CT, m
′ = cs (m) and x satisfies x ≤:m,n s then (Sx , <:m,x ) is a support structure for

| | Zm.P (m′) | |TVm,x
, where Sx = (<:∗m)−1 (x ) and <:m,x = (<:+m)�Sx .

The proof proceeds by tree induction on Tn, the subtree rooted at n in T. To this end, fix m ∈
D (n); the induction hypothesis states that for all m′ ∈ D↓(m) and s ∈ S , S1 and S2 hold. We must
show that for any s ∈ S , S1 and S2 are true of m. So fix s ∈ S . We now do a case split on whether
ρ (m) = Un. If ρ (m) � Un then m � CT, and S2 vacuously holds for all s ∈ S ; all that needs to be
proved is S1 form and s . We now do a case analysis on all the forms of ρ (m) when ρ (m) � Un. All
such cases are similar; we only consider ρ (n) = (〈K〉, f ) in detail. In this case m = X �T ,VΔ 〈K〉Φ
for some X and Φ, cs (m) = m′, and m′ = f (X ) �T ,VΔ Φ; recall that x K−→ f (x ) for all x ∈ X .
The induction hypothesis ensures that for all t ∈ S , S1 holds for m′; we must show that S1 holds
for m and s . To this end, let x ∈ X be such that x ≤:m,n s; we must show that x ∈ || P (m) | |TVm,x

.

Note that f (x ) <m′,m x ; the pseudo-transitivity of ≤:m,n then guarantees that f (x ) ≤:m′,n s , and
the induction hypothesis ensures that f (x ) ∈ || P (m′) | |TVm′, f (x )

. Corollary 7.15 implies that f (x ) ∈
|| P (m′) | |TVm, f (x )

, and the semantics of 〈K〉 establish that x ∈ || 〈K〉P (m′) | |TVm,x
= | | P (m) | |TVm,x

;

thus S1 holds for m and s .
Now suppose ρ (m) = Un. In this case m ∈ CT, meaning m = X �T ,VΔ U , where U ∈ dom(Δ),

Δ(U ) = σZ .Φ, cs (m) = m′ and m′ = X �T ,VΔ Φ[Z := U ]. We must show S1 and S2 for m

and s . We consider S2 first. Let x ≤:m,n s , and define fm,x = | | Zm.P (m′) | |TVm,x
. We must show

that (Sx , <:m,x ) is a support structure for fm,x . Following Definition 4.1, it suffices to prove that for
every x ′ ∈ Sx ,x

′ ∈ fm,x ((<:m,x )−1 (x ′)). So fix x ′ ∈ Sx . By definition of Sx this means that x
′ <:∗m x .

Since x ′ <m′,m x ′, it follows that x ′ ≤:m′,m x ′ and, due to the pseudo-transitivity Lemma 7.11,
that x ′ ≤:m′,n s . From the induction hypothesis, we know that S1 holds for m′ and x ′, meaning
x ′ ∈ | | P (m′) | |TVm′,x ′

. To complete this part of the proof it suffices to establish that | | P (m′) | |TVm′,x ′
⊆

fm,x ((<:m,x )−1 (x ′)). We begin by noting that since x ′ <m′,m x ′ and all occurrences of any Z ∈
VarT in P (m′) are positive, Lemma 7.14 ensures that | | P (m′) | |TVm′,x ′

⊆ | | P (m′) | |TVm,x ′
. It, therefore,

suffices to show that | | P (m′) | |TVm,x ′
⊆ fm,x ((<:m,x )−1 (x ′)). From the definition of fm,x ,

fm,x ((<:m,x )−1 (x ′)) = | | P (m′) | |TVm,x [Zm:=(<:m,x )−1 (x ′)].
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Because every Z ∈ VarT appearing in P (m′) appears only positively, the fact that | | P (m′) | |TVm,x ′
⊆

fm,x ((<:m,x )−1 (x ′)) follows from the following two observations.

(1) For all Z ∈ Var \ VarT,Vm,x ′ (Z ) =
(
Vm,x [Zm := (<:m,x )−1 (x ′)]

)
(Z ).

(2) For all Z ∈ VarT,Vm,x ′ (Z ) ⊆
(
Vm,x [Zm := (<:m,x )−1 (x ′)]

)
(Z ).

To finish the proof we now need to show that statement S1 holds for companion nodem and s ∈
S . So fix x such that x ≤:m,n s; wemust show that x ∈ || P (m) | |TVm,x

. We know from the definition of

P that P (m) = σZm.P (m′). Ifσ = ν then as statement S2 holds we know that (Sx , <:m,x ) is a support
structure for | | Zm.P (m′) | |TVm,x

. Therefore, Sx is supported for | | Zm.P (m′) | |TVm,x
, and Corollary 4.7

ensures that Sx ⊆ ν ( | | Zm.P (m′) | |TVm,x
). As x ∈ Sx and ν ( | | Zm.P (m′) | |TVm,x

) = | | P (m) | |TVm,x
, the

result follows. The case where σ = μ follows a similar line of reasoning, but uses the fact that
<:m,x is well-founded to note that Sx is well-supported for | | Zm.P (m′) | |TVm,x

. Corollary 4.5 then

implies the desired result. �

Corollary 7.17 (Support Structures for Top-level Companion Nodes). Let T =

(T, ρ,T ,V, λ) be a successful tableau, with n ∈ CT a top-level companion of T and n′ the child

of n in T. Also let S = st(n). Then (S, <:+n ) is a support structure for | | Zn.P (n′) | |TV .

Proof. Follows from the fact that since n is top-level, the only variable in VarT that can
appear free in P (n′) is Zn. Lemma 7.15 thus guarantees that for any S

′, | | Zn.P (n′) | |TVn
(S ′) =

| | Zn.P (n′) | |TV (S ′). Lemma 7.16 then establishes the corollary. �

Example 7.18. Recall node ordering <:n1= {(s,ω) | s ∈ N}∪{(s, s+1) | s ∈ N} from Example 6.18.
It follows that <:+n1= {(s,ω) | s ∈ N} ∪ {(s, s ′) | s, s ′ ∈ N and s < s ′}. The structure (N ∪ {ω}, <:+n1 )
is a well-founded support structure for the function | | Zn1 .[a]Zn1 | |TV in our running example.

7.4 Soundness

We now prove that our proof system is sound by establishing that the root sequent of every suc-
cessful tableau is valid. This proof relies on first constructing the prefix of a successful tableaux, in
which the top-level companion nodes in this tableaux are turned into leaves. Formally, this prefix
is obtained as follows:

Definition 7.19 (Tree-prefix Generation). LetT = (N, r,p, cs ) be a finite ordered tree, and let L ⊆ N.
Then T�L, the tree prefix of T generated by L, is the tree (N′, r,p ′, cs ′) given as follows:

— N′ = N \ (
⋃

l∈L D↓(l)).
— Let n′ ∈ N′. Then p ′(n′) = p (n′).
— Let n′ ∈ N′. Then cs ′(n′) = ε if D↓(n) ∩ N′ = ∅, and cs (n′), otherwise.

The nodes of T�L are the nodes of Twith the strict descendants of nodes in L removed.While L can
be thought of as specifying nodes in T that should be converted into leaves in T�L, this intuition
is only partially accurate, since it is not the case that every l ∈ L is a node in T�L. In particular, if
l has a strict ancestor in L this would cause the removal of l from T�L. However, if l ∈ L has no
strict ancestors in L then it is indeed a leaf in T�L.

Theorem 7.20 (Soundness of Mu-calculus Proof System). Fix LTS (S,→) of sort Σ and val-

uation V , and let T = (T, ρ,T ,V, λ) be a successful tableau for sequent s ∈ STVar, where dl(s) = ε .

Then s is valid.
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Proof. Let T = (N, r,p, cs ) be the tree component of T, and define L ⊆ N as follows:

L = {n ∈ N | dl(n) = ε ∧ ρ (n) = σZ }.
Now consider the tree prefix T�L of T. It can be seen that T�L = (N′, r,p ′, cs ′) is such that N′

contains precisely the nodes of T for which dl(n) = ε . Moreover, each leaf n of T�L is either a leaf
of T or has the property that n = S �T ,Vε σZ .Φ for some S and Φ and that the child n′ of n in T is

such that n′ = S �T ,V
(U=σ Z .Φ)

U is a top-level companion node in T. We will show that each leaf n of

T�L is valid; this fact, and Lemma 7.1, can be used as the basis for a simple inductive argument on
T�L to establish that every node in T�L is valid, including root node r, whose sequent label is s.
So fix leaf n in T�L. There are two cases to consider. In the first, n is also a leaf in T. In this case,

since T is successful, n is successful, and, therefore, valid. In the second case, n = S �T ,Vε σZ .Φ

and has a single child n′ = S �T ,V
(U=σ Z .Φ)

U that is a top-level companion node of T. Let n′′ be

the child of n′. Corollary 7.17 guarantees that (S, <:+n′ ) is a support structure for | | Zn′ .P (n′′) | |TV .
We will now show that S ⊆ || P (n′) | |TV . There are two sub-cases to consider. In the first, σ = ν .

It follows from the definitions that S is supported for | | Zn′ .P (n′′) | |TV and thus by Corollary 4.7,
S ⊆ ν ( | | Zn′ .P (n′′) | |TV ) = | | P (n′) | |TV . In the second, σ = μ. Since T is successful <:n′ is well-

founded, meaning that <:+n′ is also well-founded. Thus, S is well-supported for | | Zn′ .P (n′′) | |TV
and thus by Corollary 4.5, S ⊆ μ ( | | Zn′ .P (n′′) | |TV ) = | | P (n′) | |TV . Since P (n) = P (n′), we know

S ⊆ || P (n) | |TV . Furthermore, note that since n′ is a top-level companion node, P (n) can contain

no free occurrences of any Z ′ ∈ VarT, meaning that for any V′ consistent with T, | | P (n) | |TV =
| | P (n) | |TV′ . Consequently, Lemma 7.6 implies that | | P (n) | |TV = | | n | | , and thus S ⊆ || n | | , whence
n is valid. �

8 COMPLETENESS

This section now establishes the completeness of our proof system. Call a tableau (T, ρ,T ,V, λ),

where T = (N, r,p, cs ), successful for sequent S �T ,VΔ Φ iff it is successful and r = S �T ,VΔ Φ.

We show that for any T , V , S and Φ, if S �T ,Vε Φ is valid then there is a successful tableau for

S �T ,Vε Φ.
The completeness results in this section rely heavily on tableau manipulations; in particular,
several proofs define constructions for merging multiple successful tableaux into a single success-
ful tableau. These constructions in turn rely on variations of well-founded induction over support
structures for the semantic functions used to give meaning to fixpoint formulas, and become sub-
tle in the setting of mutually recursive fixpoints. To clarify and simplify these arguments, the first
subsection below introduces relevant notions from general fixpoint theory in the setting of mutual
recursion. These results are then used later in this section to define the tableau constructions we
need to establish completeness.

8.1 Mutual Recursion and Fixpoints

Mu-calculus formulas of form σZ .(· · ·σ ′Z ′.(· · ·Z · · · ) · · · ) are said to be mutually recursive, be-
cause the semantics of the outer fixpoint formula, σZ . · · · , depends on the semantics of the inner
fixpoint formula, σ ′Z ′. · · · , which in turn (because Z is free in its body) depends on the seman-
tics of the outer fixpoint. If σ � σ ′ then these mutually recursive fixpoints are also said to be
alternating. Mutually recursive fixpoints present challenges when reasoning about completeness.
In this section we develop a theory of mutually recursive fixpoints in the general setting of re-
cursive functions over complete lattices to support this reasoning. In particular, we show how
to define mutually recursive fixpoints in terms of binary functions, and we define a property of
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binary relations, which we call quotient well-foundedness, that can be applied to support structures
for mutually recursive fixpoints in order to support a form of well-founded induction.

Mutual recursion. Let S be a set, with (2S , ⊆,⋃,⋂) the subset lattice over S (cf. Definition 3.17).
To formalize mutually recursive fixpoints we use monotonic binary functions over 2S .

Definition 8.1 (Monotonic Binary Functions). Binary function f ∈ 2S × 2S → 2S is monotonic iff
for all X1,X2,Y1,Y2 ∈ 2S , if X1 ⊆ X2 and Y1 ⊆ Y2 then f (X1,Y1) ⊆ f (X2,Y2).

Binary functions are monotonic when they are monotonic in each argument individually. We now
define the following operations on binary functions to help formalize mutually recursive fixpoints.

Definition 8.2 (Binary-function Operations). Let f ∈ 2S × 2S → 2S be monotonic.
(1) Let X ,Y ⊆ S . Then functions f (X , ·), f ( ·,Y ) ∈ 2S → 2S are defined by

f (X , ·) (Y ) = f ( ·,Y ) (X ) = f (X ,Y ).

Since f (X , ·) and f ( ·,Y ) are monotonic when f is, wemay further define f ( ·,σ ), f (σ , ·) ∈ 2S → 2S ,
where σ ∈ {μ,ν }, as follows:

f ( ·,σ ) (X ) = σ f (X , ·),

f (σ , ·) (Y ) = σ f ( ·,Y ) .

(2) Suppose further that д ∈ 2S × 2S → 2S is binary and monotonic over 2S and that σ ∈ {μ,ν }.
Then the function ( f [σ ]д) ∈ 2S → 2S is defined as follows:

( f [σ ]д) (X ) = f (X ,д( ·,σ ) (X )).

To understand the above definitions, first note that if f is binary and monotonic then f (X , ·) ∈
2S → 2S is the unary function obtained by holding the first argument of f fixed at X , leaving only
the second argument to vary. Similarly, f ( ·,Y ) ∈ 2S → 2S is the unary function obtained by holding
the second argument of f fixed at Y . The monotonicity of f guarantees the monotonicity of f (X , ·)
and f ( ·,Y ) , and thus fixpoints σ f (X , ·) and σ f ( ·,Y ) are well defined for allX andY and σ ∈ {μ,ν }. This
fact ensures that unary functions f ( ·,σ ) and f (σ , ·) are well-defined; in the first case, given argument
X , f ( ·,σ ) (X ) returns the result of computing the σ -fixpoint of f when the first argument of f is
held at X . The second case is similar. It is straightforward to establish that f ( ·,σ ) and f (σ , ·) are also
monotonic for all σ ∈ {μ,ν }. Finally, for each σ ∈ {μ,ν } the operation [σ ] defines a composition
operation that converts binary monotonic functions f and д into a unary monotonic function with
the following behavior. Given input X ⊆ S the composition function applies f to X and the result
of computing the σ -fixpoint of д with its first argument held at X . To understand the importance
of this function, consider the following notional pair of mutually recursive equations, where f and
д are monotonic binary functions.

X
σ
= f (X ,Y ),

Y
σ ′
= д(X ,Y ).

Here σ ,σ ′ ∈ {μ,ν }; the intention of these equations is to define X and Y as the mutually recursive
σ and σ ′ fixpoints of f and д, with the first equation dominating the second one. In the usual def-
initions of such equation systems, X is defined to be σ ( f [σ ′]д), i.e., the σ -fixpoint of the function
f [σ ′]д, while Y is taken to be д( ·,σ ′) (X ); see, e.g., [50].
The next lemma highlights the role that the f [σ ]д construct plays in the semantics of the mu-
calculus formulas that involve nested fixpoints. The statement relies on the notion of a maximal

fixpoint subformula. Briefly, if Φ is a formula then σZ .Γ is a maximal fixpoint subformula of Φ iff
it is a subformula of Φ and is not a proper subformula of any other fixpoint subformula of Φ.
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Lemma 8.3 (Nested Fixpoint Semantics). Let σZ .Φ ∈ FΣ
Var be a formula, let σ ′Z ′.Γ be a

maximal fixpoint subformula of Φ, and let Φ′ and W ∈ Var be such that W is fresh and Φ =
Φ′[W := σ ′Z ′.Γ]. Then | | Z .Φ | |TV = f [σ ′]д, where f (X ,Y ) = | | Φ′ | |TV[Z ,W :=X ,Y ]

and д(X ,Y ) =

| | Γ | |TV[Z ,Z ′:=X ,Y ]
.

Proof. Follows from Lemma 5.14 and the definition of f [σ ′]д. �

This result implies that | | σZ .Φ | |TV = σ ( f [σ ′]д), where σZ .Φ, f and д are defined as in the lemma.

Quotient well-foundedness and well-orderings. Our goal in this part of the article is to characterize
a support structure for д in terms of a given support structure for f [σ ]д. For unary functions,
support structures may be either well-founded or not, and this property is sufficient to characterize
both the greatest and least fixponts of these functions. For function f [σ ]д, where f and д are
binary and have mutually recursive fixpoints, an intermediate notion, which we call quotient well-

foundedness is important, especially when the mutually recursive fixpoints are of different types
(i.e., one is least while the other is greatest). The proofs of the lemmata concerning quotient-well-
foundedness and well-orderings are included in the appendix.

Definition 8.4 (Quotient Well-founded (qwf)/Well-Ordering (qwo)). Let S be a set and R ⊆ S × S
a binary relation over S , and let (QR ,�) be the quotient of R (cf. Definition 3.8), with � = �− the
irreflexive core of �.
(1) R is quotient well-founded (qwf) iff � is well-founded over QR .
(2) R is a quotient well-ordering (qwo) iff � is well-ordering over QR .

That is, R is quotient well-founded iff the irreflexive core of the partial order induced by R over
its equivalence classes is well-founded. Note that R can be qwf without being well-founded; when
this is the case the non-well-foundedness of R can be seen as due solely to non-well-foundedness
within its equivalence classes. It is also easy to see that if R is well-founded then it is qwf as well; in
this case eachQ ∈ QR has form {s} for some s ∈ S . Also note that the universal relationUS = S ×S
over S is trivially qwf, as its quotient has one equivalence class, namely, S .
It turns out that if a relation is total and qwf, then it is also a quotient well-ordering.

Lemma 8.5 (Total Qwf Relations are Qwos). If R ⊆ S × S is total and qwf, then R is a qwo.

The next result establishes the existence of so-called pseudo-minimum elements in subsets drawn
from qwos. These elements are defined as follows:

Definition 8.6 (Pseudo-minimum Elements). Let R ⊆ S × S be a binary relation over S , and let
X ⊆ S . Then x ∈ X is R-pseudo-minimum for X iff x is an R-lower bound for X .

If x ∈ X is an R-pseudo-minimum for X , this does not imply that x is an R-minimum, or even
R-minimal, since even though x is a R-pseudo-minimum there may exist x ′ ∈ X such that x ′ R x .
In this case it must hold that x ∼R x ′, however.
The next lemma states a pseudo-minimum result for qwo relations that are total. (It should be
noted that a relation can be a qwo and still not itself be total.)

Lemma 8.7 (Pseudo-minimum Elements and Quotient Well-orderings). Suppose qwo R ⊆
S × S is total. Then every non-empty subset X ⊆ S contains an R-pseudo-minimum element.

We now establish a relationship between support structures for f [σ ]д and д. We first define a
notion of compatibility for such support structures.
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Definition 8.8 (Local Consistency of Support Structures). Let f ,д ∈ 2S × 2S → 2S be monotonic,
and let σ1,σ2 ∈ {μ,ν }. Furthermore, let (X ,≺) be a σ1-compatible support structure for f [σ2]д, with
Yx = σ2д(≺−1 (x ), ·) for x ∈ X and Y = σ2 д(≺−1 (X ), ·) . Then σ2-compatible support structure (Y ,≺′) for
д(≺−1 (X ), ·) is locally consistent with (X ,≺) iff for all x ∈ X , (Yx , (≺′)�Yx ) is a σ2-compatible support

structure for д(≺−1 (x ), ·) and for all y ∈ Yx ,≺′−1 (y) ⊆ Yx .

Intuitively, (Y ,≺′) is locally consistent with (X ,≺) if ≺′ not only supports the fact that Y is the
σ2-fixpoint for д(≺−1 (X ), ·) , but via the restriction of ≺′ to Yx , it also provides localized support for
the fact that Yx is the σ2-fixpoint for д(≺−1 (x ), ·) , for each x ∈ X . In addition, for any x ∈ X and

y ∈ Yx every element in the support set ≺′−1 (y) with respect to ≺′ must also be an element of Yx .
Note that this last aspect of the definition ensures that for any x and y ∈ Yx ,

≺′−1 (y) = ((≺′)�Yx )−1 (y).

The next lemma establishes that, for given support structures of a specific type for f [σ2]д, con-
sistent support structures exist for д. While the statement of this lemma is very different from that
of Lemma 4.3, the proofs use very similar constructions.

Lemma 8.9 (From Composite to Local Support Structures). Let f ,д ∈ 2S × 2S → 2S be

monotonic and σ1,σ2 ∈ {μ,ν }, with X = σ1 ( f [σ2]д). Also let (X ,≺) be a σ1-compatible, total qwf

support structure for f [σ2]д and Y = σ2д(≺−1 (X ), ·) . Then there is a σ2-compatible, total qwf support

structure (Y ,≺′) for д(≺−1 (X ), ·) that is locally consistent with (X ,≺).

8.2 Tableau Normal Form

Later in this section, we use constructions on tableaux to prove completeness of our proof system.
The tableaux we work with have a restricted form, which we call tableau normal form (TNF). TNF
is defined as follows:

Definition 8.10 (TNF). Let T = (T, ρ,T ,V, λ) be a tableau, with T = (N, r,p, cs ). Tableau T is in
TNF iff it satisfies

(1) ρ (r) � Thin and for all n � r, ρ (n) = σZ . iff ρ (p (n)) = Thin,
(2) for each definitional constant U appearing in T there is exactly one node nU such that

fm(nU ) = U and ρ (nU ) = Un, and
(3) for each node n such that ρ (n) = ∨ and cs (n) = n1n2, st(n1) ∩ st(n2) = ∅.

Intuitively, T is in TNF if Thin is not applied to the root node, every application of the σZ . rule
to a non-root node is immediately preceded by a single instance of Thin, and there are otherwise
no other applications of Thin; each definitional constant is unfolded exactly once; and for each
∨-node, the state sets of the node’s children are disjoint (i.e., no state can appear in both children,
meaning there can be no redundant reasoning about states in the ∨-node).
In what follows we will on occasion build new (successful) TNF tableaux out of existing (suc-
cessful) TNF tableaux that are structurally equivalent.

Definition 8.11 (Structurally Equivalent Tableaux). Tableaux T1 = (T1, ρ1,T ,V1, λ1) and T2 =
(T2, ρ2,T ,V2, λ2) are structurally equivalent if the underlying trees T1 and T2 are isomorphic, and
for isomorphic nodes n1 in T1 and n2 in T2 it holds that rn(ρ1 (n1)) = rn(ρ2 (n2)), fm(λ1 (n1)) =
fm(λ2 (n2)), and dl(λ1 (n1)) = dl(λ2 (n2)). If ι is an isomorphism satisfying these properties, we
refer to it as a structural tableau morphism from T1 to T2.

Two tableaux are structurally equivalent if they are “almost isomorphic”, in the standard sense.
Specifically, they must involve the same transition system, their trees must be isomorphic, and
isomorphic nodes in the two trees must have the same proof rule applied to them, although they
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may have different witness functions if the rule involved is 〈K〉. Sequents labeling isomorphic
nodes may differ in their valuations, and the set of states mentioned in the sequents, although the
formulas and definition lists must be the same. Intuitively, structurally equivalent tableaux may
be seen as employing the same reasoning, but on slightly different, albeit similar, sequents.
Call a tableau diamond-leaf-free if it contains no diamond leaves; recall that any successful
tableau must be diamond-leaf-free. The next lemma establishes that if two diamond-leaf-free TNF
tableaux have root sequents s1 and s2 such that fm(s1) = fm(s2) and dl(s1) = dl(s2) = ε , then
the tableaux must be structurally equivalent. It relies on an assumption that we make through-
out this section: that definitional constants as introduced in the σZ . rule are generated uniformly.

That is, if the sequent labeling a node has form S �T ,VΔ σZ .Φ and rule σZ . is applied, then a
given definitional constantU depending only on σZ .Φ and Δ is introduced, with the child sequent

S �T ,V
Δ ·(U=σ Z .Φ)

U being generated.

Lemma 8.12 (Structural Eqivalence of TNF Tableaux). Let s1 = S1 �T ,V1ε Φ and s2 =

S2 �T ,V2ε Φ be sequents, with T1 and T2 diamond-leaf-free TNF tableaux for s1 and s2, respectively.

Then T1 and T2 are structurally equivalent.

Proof. It suffices to give a structural tableau morphism from T1 to T2. This can be done co-
inductively using T1 and T2, the trees embedded in T1 and T2. The limitations imposed by TNF on
the use of the Thin and Un rules ensure the desired similarities in sequents labeling isomorphic
tree nodes, while the diamond-leaf-free property ensures that all leaves must be free leaves, i.e., of
form Z or ¬Z for some Z free in Φ, or σ -leaves, i.e., of formU for someU defined in the definition
list of the leaf. �

8.3 Completeness via Tableau Constructions

We now turn to proving the existence of successful TNF tableaux for different classes of valid se-
quents. The first result establishes the existence of such tableaux for valid sequents whose formulas
contain no fixpoint subformulas.

Lemma 8.13 (Fixpoint-free Completeness). Let T ,V,Φ and S be such that Φ is fixpoint-free

and S ⊆ || Φ | |TV . Then there is a successful TNF tableau for S �T ,Vε Φ.

Proof sketch. Let T = (S,−→) be an LTS of sort Σ andV be a valuation. The proof proceeds
by structural induction on Φ; the induction hypothesis states for any subformula Φ′ of Φ and S ′

such that S ′ ⊆ | | Φ′ | |TV , that S
′ �T ,Vε Φ′ has a successful TNF tableau. The argument involves a

case analysis on the form of Φ whose cases are routine. �

We now turn to the existence of successful TNF tableaux for different classes of sequents involv-
ing fixpoint formulas. We first define the notion of compliance between a tableau and a support
structure.

Definition 8.14 (Tableau Compliance with ≺). LetT ,V,Z ,Φ,σ and S be such that S = | | σZ .Φ | |TV .
Also let (S,≺) be a σ -compatible support structure for | | Z .Φ | |TV . Then TNF tableau (T, ρ,T ,V, λ)

with root node r = S �T ,Vε σZ .Φ and r′ = cs (r) = S �T ,V
(U=σ Z .Φ)

U is compliant with ≺ iff whenever
s ′ <:r′ s , then s

′ ≺ s .

Intuitively, tableau T for sequent S �T ,Vε σZ .Φ is compliant with support structure ≺ iff every
extended dependency from s ∈ S to a state in a companion leaf of r′ is also a semantic dependency
as reflected in ≺. Note that since the root node of T is a fixpoint node and T is in TNF, ρ (r) = σZ .
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and thus cs (r) = r′ = S �T ,V
U=σ Z .Φ U for some definitional constant U . Also, since T is TNF ρ (r′) =

Un, and r′ is the only node in which unfolding is applied to the definitional constantU .
The next lemma continues the sequence of results in this section on the existence of successful
TNF tableaux for valid sequents. In this case, formulas have form σZ .Φ, where Φ contains no
fixpoint subformulas, and have specific σ -compatible support structures, and the result shows how
successful TNF tableaux that are compliant with the given support structure can be constructed.

Lemma 8.15 (Single-fixpoint Completeness). Fix T , and let Φ,Z ,V,σ and S be such that Φ is

fixpoint-free and S = | | σZ .Φ | |TV . Also let (S,≺) be a σ -compatible, total, qwf support structure for

| | Z .Φ | |TV . Then S �T ,Vε σZ .Φ has a successful TNF tableau compliant with (S,≺).

Proof. Fix T = (S,−→) of sort Σ, and let Φ,Z ,V,σ and S be such that Φ is fixpoint-free and
S = | | σZ .Φ | |TV . Also let (S,≺) be a σ -compatible, total, qwf support structure for f = | | Z .Φ | |TV .
Wemust construct a successful TNF tableau for sequent S �T ,Vε σZ .Φ that is compliant with (S,≺).
The proof consists of the following steps.

(1) For each s ∈ S we use Lemma 8.13 to establish the existence of a successful TNF tableau for
sequent {s} �T ,Vs

ε Φ, whereVs = V[Z := ≺−1 (s )].

(2) We then construct a successful TNF tableau for sequent S �T ,VS
ε Φ, where VS = V[Z :=

≺−1 (S )], from the individual tableaux for the s ∈ S .
(3) We convert the tableau for S �T ,Vs

ε Φ into a successful TNF tableau for S �T ,Vε σZ .Φ that is
compliant with ≺.

Step 1 of proof outline: construct tableau for {s} �T ,Vs
ε Φ, where s ∈ S . For any s ∈ S we have that

s ∈ || Φ | |TVs
, meaning {s} ⊆ || Φ | |TV is valid. Since Φ is fixpoint-free Lemma 8.13 guarantees the

existence of a successful TNF tableau

Ts = (Ts, ρs ,T ,Vs , λs ),where

Ts = (Ns , rs ,ps , css )

for {s} �T ,Vs
ε Φ. We now remark on some properties of Ts .

(1) Suppose s ′ and n′ ∈ Ns are such that fm(n′) = Z (so n′ is a leaf whose formula is Z , the
variable bound by σ in σZ .Φ) and s ′ <:n′,rs

s . Then s ′ ≺ s , since s ′ ∈ Vs (Z ) = ≺−1 (s ).

(2) Let s ′ ∈ S , and let Ts ′ be the successful TNF tableau for {s ′} �T ,Vs′
ε Φ. Lemma 8.12 and

the fact that successful tableaux must be diamond-leaf-free guarantee that Ts and Ts ′ are
structurally equivalent.

Observation 1 establishes a relationship between dependencies involving the single state in the
root node of Ts and states in the leaves involving Z . Observation 2 guarantees that the successful
TNF tableaux due to Lemma 8.13 are structurally equivalent, and hence isomorphic as trees, and
satisfying the property that isomorphic nodes in these trees share the same formulas, definition
lists (ε in this case) and rule names. In what follows, we use T = (N, r,p, cs ), fm(n) and rn(n) for
these common structures and write Ts = (T, ρs ,T ,Vs , λs ) for s ∈ S , noting that for all s, s ′ ∈ S ,
rn(ρs (n)) = rn(ρs ′ (n)) = rn(n).

Step 2 of proof outline: construct tableau for S �T ,VS
ε Φ. We now construct a successful TNF

tableau for S �T ,VS
ε Φ satisfying the following: if s, s ′ and n′ are such that fm(n′) = Z and s ′ <:n′,r s ,

then s ′ ≺ s . There are two cases to consider. In the first case, S = ∅. In this case, ≺ = ≺−1 (S ) = ∅,
and ∅ �T ,VS

ε Φ is valid and therefore, by Lemma 8.13, has a successful TNF tableau. Define TS to
be this tableau. Note that, since S = ∅, TS vacuously satisfies the property involving <:.
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In the second case, S � ∅; we will construct TS = (T, ρS ,T ,VS , λS ) that is structurally equiva-
lent to eachTs for s ∈ S . The intuition behind the construction is to “merge” the individual tableaux
Ts for the s ∈ S by assigning to each node n in TS the set of states obtained by appropriately com-
bining all the sets of states each individual tableau Ts assigns to the node. Care must be taken with
nodes involving the ∨ and 〈K〉 proof rules.
Since T is already given, completing the construction of TS only requires that we define ρS and

λS , which we do so that the following invariants hold for each n ∈ N.

I1. If ρS (n) is defined, then rn(ρS (n)) = rn(n) and the sequents assigned by λS to n and its
children are consistent with ρS (n).

I2. fm(λS (n)) = fm(n).
I3. st(λS (n)) ⊆ ⋃s ∈S st(λs (n)).

The definitions of ρS and λS are given in a co-inductive fashion (i.e., “from the root down”). We

begin by taking λS (r) = S �T ,VS
ε Φ; invariants I2 and I3 clearly hold of λS (r). For the co-inductive

step we assume that n satisfies I2 and I3 and define ρS (n′) and λ(n′) for each child n′ of n so that
I1 holds of n and I2 and I3 hold of each of the n′. This is done below based on rn(n), the name of
the rule applied to n. Note that because each Ts is in TNF and Φ is fixpoint-free there can be no
n ∈ N such that rn(n) ∈ {Thin,σZ ,Un}. In what follows we let Sn = st(λS (n)) be the set of states
in the sequent labeling n. Most cases are left to the reader; we detail only the cases when rn(n)⊥
and rn(n) = 〈K〉.
rn(n)⊥. In this case, I1 holds vacuously. Note that n must be a leaf and thus has no children.
rn(n) = 〈K〉. In this case, cs (n) = n′ and fm(n) = 〈K〉fm(n′). To define ρS (n) we first construct

a witness function fn ∈ Sn → S such that s K−→ fn (s ) for all s ∈ Sn and such that fn (Sn) ⊆⋃
s ∈S st(λs (n′)). This function will then be used to define the sequent labeling n′. So fix

s ∈ Sn; we construct fn (s ) based on the tableaux Ts ′ whose sequent for n contains s . To this
end, define

Is = {s ′ ∈ S | s ∈ st(λs ′ (n))}.
Intuitively, Is ⊆ S contains all states s ′ whose tableau Ts ′ contains state s in n. Clearly Is
is non-empty and thus contains a pseudo-minimum element s ′ w.r.t. ≺ (Lemma 8.7). Now
consider ρs ′ (n); it has form (〈K〉, fn,s ′ ), where fn,s ′ is the witness function for n in tableau
Ts ′ . This means that fn,s ′ ∈ st(λs ′ (n)) → S is such that st(λs ′ (n

′)) = fn,s ′ (st(λs ′ (n))). We

now define fn (s ) = fn,s ′ (s ), ρS (n) = (〈K〉, fn), and λS (n′) = fn (Sn) �T ,VS
ε fm(n′). It can be

seen that invariant I1 holds of n and that I2 and I3 hold of n′.

This construction ensures that Properties I1–I3 hold for all n.
To establish that TS is successful, we must show that every leaf in TS is successful (cf.
Definition 6.13), which amounts to showing that for each such leaf n, st(λS (n)) ⊆ || fm(n) | |TVS

.

Since Φ contains no fixpoint subformulas there are two cases to consider.

fm(n) = Z . In this case, the formula labeling n is the bound variable Z in σZ .Φ. Since, for each
s ∈ S , Ts is successful and ≺−1 (s ) ⊆ ≺−1 (S ), we have

st(λs (n)) ⊆ || fm(n) | |TVs
= Vs (Z ) = ≺−1 (s ).

As invariant I3 ensures that st(λS (n)) ⊆ ⋃s ∈S st(λs (n)), it follows that

st(λS (n)) ⊆
⋃

s ∈S
st(λs (n)) =

⋃

s ∈S
≺−1 (s ) = ≺−1 (S ) = VS (Z ) = | | fm(n) | |TVS

.

Leaf n is, therefore, successful.
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fm(n) ∈ {Y ,¬Y } for some Y � Z free in σZ .Φ. The argument is very similar to the previous
case; the only difference is that for any s ∈ S , Vs (Y ) = VS (Y ) and thus, | | fm(n) | |TVs

=

| | fm(n) | |TVS
.

That TS is in TNF follows from the fact that it is successful (and thus, diamond-leaf-free) and
that each Ts is successful and TNF, and from the definitions of ρS and λS .
We now establish that for all leaves n in TS such that fm(n) = Z , and sn, sr ∈ S such that

sn <:n,r sr in TS , sn ≺ sr. We begin by noting that if n = r then Φ = Z and sn <:n,r sr iff sn = sr.

In this case, if σ = ν then S = | | νZ .Z | |TV = S and the result holds because (S,≺) is a support
structure for f , and thus must be reflexive since f is the identity function. If instead σ = μ then
S = | | μZ .Z | |TV = ∅ and the result is vacuously true.
Now assume that n � r. We start by remarking on a property that holds of all n1,n2, s1 and s2
such that s2 <n2,n1 s1 in TS : for every s ∈ S such that s1 ∈ st(λs (n1)), either s2 ∈ st(λs (n2)), or
there exists s ′ ≺ s such that s2 ∈ st(λs ′ (n2)). That is, when s2 <n2,n1 s1 in TS , meaning n2 is a child
of n1 and s2 is a direct dependent of s1 in TS , and Ts is a tableau containing s1 in n1, then s2 is also
contained in n2 of either Ts or Ts ′ for some s

′ ≺ s . This is easily observed based on the definition
of <n1,n2 , as well as the construction of TS above and its use of pseudo-minimal states in the ∨ and
〈K〉 cases. A simple inductive argument lifts this result to the case when n1 � n2 and s1, s2 are such
that s2 <:n2,n1 s1 in TS : for all s ∈ S such that s1 ∈ st(λs (n1)), either s2 ∈ st(λs (n2)) or there exists
s ′ ≺ s such that s2 ∈ st(λs ′ (n2)). Now consider n and r as given above, and assume sn <:n,r sr. It
follows from the definition of Ts that if sr ∈ st(λs (r)) then s = sr, since st(λs (r)) = {s}. There are
now two cases to consider. In the first, sn ∈ st(λs (n)), whence sn ∈ Vs (Z ) and sn ≺ s = sr. In the
second, there is an s ′ ∈ S such that s ′ ≺ sr and sn ∈ st(λs ′ (n)). In this case, sn ∈ Vs ′ (Z ) = ≺−1 (s ′),
meaning that sn ≺ s ′. Since ≺ is total, and hence transitive, we have sn ≺ s ′ ≺ sr and thus sn ≺ sr.

Step 3 of proof outline: construct tableau for S �T ,Vε σZ .Φ. To complete the proof, we convert

TS into a tableau Tσ = (Tσ , ρσ ,T ,V, λσ ) for sequent S �T ,Vε σZ .Φ as follows. We create two
fresh tree nodes r1, r2 � N and add these into Tσ along with all the nodes of T. The root of Tσ is
taken to be r1; the parent of r2 is then r1, while the parent of r, the original root of T, is r2. The
other nodes of T retain their parents and sibling structure from T. We also define ρσ (r1) = σZ and
ρσ (r2) = Un; for all nodes n in T, ρσ (n) = ρS (n). We now define λσ as follows:

λσ (n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S �T ,Vε σZ .Φ if n = r1

S �T ,V
(U=σ Z .Φ)

U if n = r2,U fresh

S ′ �T ,V
(U=σ Z .Φ)

Φ′[Z := U ] if λS (n) = S ′ �T ,Vε Φ′.

To finish the proof we must establish that Tσ is a successful TNF tableau compliant with (S,≺).
That Tσ is a tableau follows from the fact that TS is a successful tableau. Now consider σ -leaf n in
Tσ ; that is, λσ (n) = Sn �T ,V(U=σ Z .Φ)

U . Since TS is successful and λS (n) = Sn �T ,Vε Z , Sn ⊆ VS (Z ) =

≺−1 (S ) ⊆ S . Since r2 is the only node with an application of rule Un, it must be the companion
node of n in Tσ . Since st(λσ (r2)) = S , n is terminal, and Tσ is indeed a tableau.
The fact that TS is TNF and that U is unfolded only once in Tσ guarantees that Tσ is TNF.
We now argue that Tσ is compliant with (S,≺). To this end, suppose that s1, s2 ∈ S are such that

s2 <:r2 s1 in Tσ ; we must show that s2 ≺ s1. This follows immediately from the fact that s2 <:r2 s1
in Tσ iff there is a leaf n in TS such that fm(λS (n)) = Z , s2 ∈ st(λS (n)), and s2 <:n,r s1 in TS .
Previous arguments then establish that s2 ≺ s1.
To establish that Tσ is successful we must show that each of its leaves is successful. Suppose

n is a non-σ -leaf leaf; that is, fm(λσ (n)) � U . In this case λσ (n) = λS (n), and the success of TS
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and all its leaves guarantees the success of this leaf. Now suppose that n is a σ -leaf, meaning that
fm(λσ (n)) = U . If σ = ν then this leaf is successful. If σ = μ then we note that for (S,≺) to be a
support structure for S = μ f , ≺ must be well-founded. Compliance of Tσ with ≺ guarantees that
<:r2 is also well-founded, and thus n is successful in this case also. This completes the proof. �

As an immediate corollary, we have the following:

Corollary 8.16. Fix T , and let Φ,Z ,V,σ and S be such that Φ is fixpoint-free and S =

| | σZ .Φ | |TV . Then S �T ,Vε σZ .Φ has a successful tableau.

Proof. Follows from Lemma 8.15, the fact that every σ -maximal support structure (S,≺) for
| | Z .Φ | |TV is total and qwf, and the fact that Corollary 4.11 guarantees the existence of such σ -
maximal support structures. �

We now state and prove a generalization of Lemma 8.15 in which the body of the fixpoint for-
mula is allowed also to have fixpoint subformulas.

Lemma 8.17 (Fixpoint Completeness). Fix T , and let Φ,Z ,V,σ and S be such that S =
| | σZ .Φ | |TV . Also let (S,≺) be a σ -compatible, total, qwf support structure for | | Z .Φ | |TV . Then

S �T ,Vε σZ .Φ has a successful TNF tableau compliant with (S,≺).

Proof. Fix T = (S,−→) of sort Σ. We prove the following: for all Φ, and Z ,V,σ and (S,≺),
if S = | | σZ .Φ | |TV , and (S,≺) is a σ -compatible, total qwf support structure for | | Z .Φ | |TV , then
S �T ,Vε σZ .Φ has a successful TNF tableau TΦ that is compliant with (S,≺). To simplify notation
we use the following abbreviations:

fΦ = | | Z .Φ | |TV ,
VX = V[Z := ≺−1 (X )].

Note thatVS = V[Z := ≺−1 (S )]. When s ∈ S we also writeVs in lieu of V{s } .
The proof proceeds by strong induction on the number of fixpoint subformulas of Φ. There are
two cases to consider. In the first case, Φ contains no fixpoint formulas. Lemma 8.15 immediately
gives the desired result.
In the second case, Φ contains at least one fixpoint subformula. The outline of the proof in this
case is as follows:

(1) We decompose Φ into Φ′, which uses a new free variableW , and σ ′Z ′.Γ in such a way that
Φ = Φ′[W := σ ′Z ′.Γ].

(2) We inductively construct a successful TNF tableau TΦ′ for S �T ,V
′

ε σZ .Φ′ that is compliant
with (S,≺), whereV′ = V[W := S ′] and S ′ = | | σ ′Z ′.Γ | |TVS

. (S ′may be seen as the semantic

content of σ ′Z ′.Γ relevant for | | σZ .Φ | |TV .)
(3) We construct a successful TNF tableau TΓ satisfying a compliance-related property for

S ′ �T ,VS
ε σ ′Z ′.Γ.

(4) We show how to compose TΦ and TΓ to yield a successful TNF tableau for S �T ,Vε σZ .Φ that
is compliant with (S,≺).

We now work through each of these proof steps.

Step 1 of proof outline: decompose Φ. Let σ ′Z ′.Γ be a maximal fixpoint subformula in Φ as defined
previously in this section. Also letW ∈ Var be a fresh propositional variable, and define Φ′ so that
it contains exactly one instance ofW and so that

Φ = Φ′[W := σ ′Z ′.Γ]
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(Φ′ is obtained by replacing one maximal instance of σ ′Z ′.Γ in Φ byW .) Note that Φ′ and Γ contain
strictly fewer fixpoint subformulas than Φ. Lemma 8.3 may now be applied to conclude that fΦ =
f [σ ′]д, where f ,д ∈ 2S × 2S → 2S are defined as follows:

f (X ,Y ) = | | Φ′ | |TV[Z ,W :=X ,Y ],

д(X ,Y ) = | | Γ | |TV[Z ,Z ′:=X ,Y ].

It is the case that (S,≺) is a σ -compatible, total qwf support structure for f [σ ′]д since it is for fΦ
and fΦ = f [σ ′]д.

Step 2 of proof outline: construct tableau TΦ′ for S �T ,V
′

ε σZ .Φ′. Since Φ′ has strictly fewer fix-
point subformulas than Φ, we wish to apply the induction hypothesis to infer the existence of

successful TNF tableau TΦ′ for S �T ,V
′

ε σZ .Φ′ that is compliant with (S,≺). To do this it suffices to
confirm that S = | | σZ .Φ′ | |TV′ = σ fΦ′ , where fΦ′ = | | Z .Φ′ | |TV′ , and that (S,≺) is a support structure
for fΦ′ (it is already σ -compatible, total and qwf). That these results hold is left to the reader. We
may thus apply the induction hypothesis to infer the existence of successful TNF tableau

TΦ′ = (TΦ′, ρΦ′,T ,V′, λΦ′ ),

where TΦ′ = (NΦ′, rΦ′,pΦ′, csΦ′ ), such that λΦ′ (rΦ′ ) = S �T ,V
′

ε σZ .Φ′ and TΦ′ is compliant with
(S,≺). Note that TΦ′ contains exactly one successful leaf nW such that fm(λΦ′ (nW )) =W .

Step 3 of proof outline: construct tableau TΓ for S ′ �T ,VS
ε σ ′Z ′.Γ. In this part of the proof we

construct a successful TNF tableau for S ′ �T ,VS
ε σ ′Z ′.Γ. This tableau is intended to be merged into

the tableau TΦ′ presented above to yield a successful tableau TΦ for sequent S �T ,Vε σZ .Φ. The
success of this composite tableau TΦ will depend in part on extended dependencies from states

in its root sequent, which is S �T ,Vε σZ .Φ, to states in the leaves of TΓ whose formula is Z , the
variable bound in σZ .Φ. For this reason, our construction needs to enforce an additional property,
whichwe call (Γ,Φ)-conformance, besides success and TNF onTΓ . (Γ,Φ)-conformance is a property
of successful, TNF tableaux whose root formula is σ ′Z ′.Γ; it imposes constraints on states in the
Z -leaves of the tableau and states in the root sequent. Intuitively, if x is a state in the root sequent
of TΦ, it, and any state in its equivalence class [x], is supported by a subset of the states in the root
sequent r ofTΓ , denotedд[x ]. Thesemay in turn depend on other states in the fixpointσ

′д[x ], which
we denote below as S ′

[
x]. The definition of (Γ,Φ)-conformance guarantees that, if a state y ∈ S ′

[
x]

that is also in r syntactically depends on x ′ in a leaf n′ labeled with variable Z corresponding to
the root of TΦ, that is, x

′ <:n′,r then there also is a semantic dependency of x on x
′, i.e., x ′ ≺ x . In

case of a least fixed point, well-foundedness of <: now follows from well-foundedness of ≺.
Defining (Γ,Φ)-conformance requires some auxiliary notions, which we introduce here. Sup-
pose that X ⊆ S . Then we define

дX = д(≺−1 (X ), ·),

S ′X = σ ′дX .

That is, дX ∈ 2S → 2S computes the semantics of Γ, which has both Z and Z ′ free, with the
semantics of Z fixed to be ≺−1 (X ) and Z ′ interpreted as the input provided to дX . S

′
X is then the

σ ′ fixpoint of дX . It can easily be seen that for any X ⊆ S , S ′X ⊆ S ′.
Now let partial order (Q≺,�) be the quotient of (S,≺) (cf. Definition 3.8), with � the irreflexive
core of �. The totality of ≺ guarantees that if Q1 � Q2 then ≺−1 (Q1) ⊆ ≺−1 (Q2). If x ∈ S then we
write [x] ∈ Q≺ for the equivalence class of x . Since ≺ is total it follows that for all x ,x ′, if x ′ ∈ [x]
then also x ∈ [x ′] and ≺−1 (x ) = ≺−1 (x ′).
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We can now define (Γ,Φ)-conformance as follows. Let T = (T, ρ,T ,V′, λ), where T =

(N, r,p, cs ), be a successful TNF tableau whose root sequent has form S ′′ �T ,V
′

ε σ ′Z ′.Γ for some
valuationV′. Then T is (Γ,Φ)-conformant iff for all x ∈ S , y ∈ S ′′ ∩ S ′

[x ]
, n′ ∈ N, if fm(λ(n′)) = Z ,

and x ′ <:n′,r y, then x
′ ≺ x holds. In effect, this property asserts a correspondence between ≺ and

the extended-dependency relation <: in T.
We now define our construction of successful, TNF, compliant, (Γ,Φ)-conformant TΓ . There are
two cases to consider. In the first, S ′ = ∅. Since Γ contains strictly fewer fixpoint subformulas
than Φ we may use the induction hypothesis to conclude that there exists a successful, TNF, ∅-
compliant tableau TΓ for S

′ �T ,VS
ε σ ′Z ′.Γ. (Note that since S ′ = ∅, structure (S ′, ∅) is the only

support structure for | | Z ′.Γ | |TVS
.) As S ′ = ∅, tableau TΓ is also vacuously (Γ,Φ)-conformant.

In the second case S ′ � ∅. As in the previous case we may apply the induction hypothesis to
construct a successful, TNF tableau for S ′ �T ,VS

ε σ ′Z ′.Γ compatible with an appropriately chosen
support structure for | | Z ′.Γ | |TVS

. However, this tableau is not guaranteed to be (Γ,Φ)-conformant,

and a different construction must be used to ensure this additional property holds. The remainder
of this part of the proof is devoted to defining this construction and arguing for its correctness.
To begin with, in order to apply the induction hypothesis to generate successful TNF compliant
tableaux for sequents involving σ ′Z ′.Γ we also need σ ′-compatible, total qwf support structures
for the values of дX we wish to consider. We obtain these from Lemma 8.9 as follows. Recall that
(S,≺) is a σ -compatible total qwf support structure for fΦ, and that fΦ = f [σ ′]д. The lemma
guarantees the existence of a σ ′-compatible, total qwf support structure (S ′,≺′) for дS that is
locally consistent9 with (S,≺).
The construction we present below for TΓ now proceeds in three steps.

— For each Q ∈ Q≺ we inductively construct a successful TNF tableau TΓ,Q for sequent

S ′Q �
T ,VQ

ε σ ′Z ′.Γ that is compliant with a subrelation of ≺′ and is also (Γ,Φ)-conformant.

— We then merge the individual TΓ,Q to form a successful TNF tableau T
′
Γ that is compliant

with ≺′ and (Γ,Φ)-conformant, and whose root-sequent state set is the union of all the root-
sequent state sets of the TΓ,Q .

— We then merge T′Γ with an inductively constructed successful, TNF tableau for S
′ �T ,VS

ε

σ ′Z ′.Γ in such a way that the resulting tableau is successful, TNF, compliant with (S ′,≺′)
and (Γ,Φ)-conformant. We take this tableau as TΓ .

Constructing TΓ,Q . We begin by noting that since (S ′,≺′) is locally consistent with (S,≺) and
≺−1 (x ) = ≺−1 (x ′) if x ∈ [x ′] it follows that for any Q ∈ Q≺, (S ′Q ,≺

′
Q ), where ≺′Q = ≺

′�S ′Q , is a σ
′-

compatible, total qwf support structure forдQ . Since Γ contains strictly fewer fixpoint subformulas
than Φ, the induction hypothesis guarantees, for each Q ∈ Q≺, the existence of a successful TNF
tableau

TΓ,Q = (TΓ,Q , ρΓ,Q ,T ,VQ , λΓ,Q )

for S ′Q �
T ,VQ

ε σ ′Z ′.Γ, where TΓ,Q = (NΓ,Q , rΓ,Q ,pΓ,Q , csΓ,Q ), that is compliant with ≺′Q .
We now note that Lemma 8.12 guarantees that for allQ,Q ′ ∈ Q≺, TΓ,Q and TΓ,Q ′ are structurally
equivalent. In other words, the only differences between these tableaux are the state sets appearing
in the sequents at each tree node and the witness functions used in rule applications involving 〈K〉.
We consequently assume in what follows that there is a single common tree TΓ = (NΓ, rΓ,pΓ, csΓ )
for all the TΓ,Q . We also introduce the following functions with respect to N that return the

9See Definition 8.8 for the meaning of local consistency.
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common elements in the sequents and rule applications labeling the tree nodes.

fmΓ (n) − the formula labeling n in all the TΓ,Q .

dlΓ (n) − the definition list labeling n in all the TΓ,Q .

rnΓ (n) − the rule name in the rule application for n in all the TΓ,Q .

It is easy to verify that each TΓ,Q is also (Γ,Φ)-conformant, as every state x ′ in a Z -leaf of TΓ,Q

by construction satisfies x ′ ≺ x for every x ∈ Q = [x].
Constructing T′Γ . Since S � ∅, also Q≺ � ∅, and we can merge the non-empty set of tableaux
{TΓ,Q | Q ∈ Q≺} into a single successful tableau T′Γ = (TΓ, ρ

′
Γ,T ,VS , λ

′
Γ ), sharing the same tree

TΓ and functions rnΓ , fmΓ , and dlΓ as the TΓ,Q , with the following properties:

G1. λ′Γ (rΓ ) =
(⋃

Q ∈Q≺ S
′
Q

)
�T ,VS

ε σ ′Z ′.Γ.

G2. T′Γ is (Γ,Φ)-conformant.

As TΓ,T andVS are already defined, completing the construction of T
′
Γ only requires that we

define ρ ′Γ and λ
′
Γ , which we do so that the following invariants hold for each n ∈ N.

I1. If ρ ′Γ (n) is defined then the sequents assigned by λ′Γ to n and its children are consistent with
rule application ρ ′Γ (n).

I2. fm(λ′Γ (n)) = fm(n)
I3. st(λ′Γ (n)) ⊆ ⋃Q ∈Q≺ st(λΓ,Q (n))
I4. dl(λ′Γ (n)) = dlΓ (n)

These invariants are suitably updated versions of the invariants appearing in the proof of
Lemma 8.15.
The definitions of ρ ′Γ and λ

′
Γ are given in a co-inductive fashion (i.e., “from the root down” rather

than “the leaves up”). More specifically, the construction first assigns a sequent to rΓ , the root of TΓ

that ensures that Property G1 holds. It immediately follows that Properties I2, I3, and I4 also hold
for the root. Then for any non-leaf node n whose sequent satisfies I2, I3, and I4, the co-induction
step defines sequents for each child of n so that these sequents each satisfy I2, I3, and I4 and so
that Property I1 holds for n. Property G2 will be proved later.

We begin by defining λ′Γ (rΓ ) = (
⋃

Q ∈Q≺ S
′
Q ) �T ,VS

ε σ ′Z ′.Γ. Property G1 is immediate, as is the

fact that I2, I3, and I4 hold for rΓ .

For the co-inductive step, suppose λ′Γ (n) = Sn �T ,VS

Δn
Γn and that invariants I2, I3, and I4 all hold

for λ′Γ (n). We define λ′Γ (n′) for each child n′ of n, and ρ ′Γ (n), the rule application for n, so as to
ensure that invariant I1 holds for n and that I2, I3, and I4 are established for each child n′. The
constructions in many cases closely match those found in Lemma 8.15.

rnΓ (n)⊥, or rnΓ (n) ∈ {∧,∨, [K], 〈K〉}. The constructions in this case mirror those in Lemma 8.15
for λS ; the only difference is that the definition lists in the child sequents are inherited from
the parent, rather than always being ε . It is straightforward to see that invariant I1 holds for
n while I2, I3, and I4 hold for the children of n.

rnΓ (n) = σZ ′′. In this case, fmΓ (n) = σ ′′Z ′′.Γ′ for some σ ′′, Z ′′ and Γ′; cs (n) = n′; dlΓ (n′) =
Δn′ = Δn · (U ′ = fmΓ (n)) for some U ′ � dom(Δn); and fmΓ (n′) = U ′. Define ρ ′Γ (n) = σZ ′′

and λ′Γ (n′) = Sn �T ,VS

Δn′
U ′. It is easy to establish that invariant I1 holds for n and that I2, I3,

and I4 hold for n′.
rnΓ (n) = Un. In this case, cs (n) = n′, dlΓ (n′) = Δn and fmΓ (n) = U ′ for some U ′ ∈ dom(Δn). Let

Δn (U ′) = σ ′′Z ′′.Γ′; then fmΓ (n′) = Γ′[Z ′′ := U ′]. Define ρ ′Γ (n) = Un and λ′Γ (n′) = Sn �T ,VS

Δn

fmΓ (n′). It is easy to establish that invariant I1 holds for n and that I2, I3, and I4 hold for n′.
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rnΓ (n) = Thin. In this case, cs (n) = n′, dlΓ (n′) = Δn and fmΓ (n) = fmΓ (n′). Take Sn′ to be⋃
Q ∈Q≺ st(λΓ,Q (n′)), and define ρ ′Γ (n) = Thin and λ′Γ (n′) = Sn′ �T ,VS

Δn
fmΓ (n′). Invariant I1

can be shown to hold for n, while I2, I3, and I4 hold for n′. (Indeed, a stronger version of I3
holds in this case, as st(λ′Γ (n′)) =

⋃
Q ∈Q≺ stΓ,Q (n′).)

We now argue that T′Γ is a successful TNF tableau that is compliant with ≺
′ and (Γ,Φ)-

conformant (i.e., satisfies Property G2). We first must establish that T′Γ is indeed a tableau. Because
of invariant I1 it suffices to show that the sequent labeling any leaf node is terminal (cf. Defini-
tion 6.9(2)). Let n be a leaf in TΓ ; we note that fm(n) has form either Z ′′ or ¬Z ′′, where Z ′′ is free
in σ ′Z ′.Γ, or U ′ for some definitional constant U ′ ∈ dom(dl(n)). In the first two cases n is clearly
terminal. In the latter case we must argue that st(λ′Γ (n)) ⊆ st(λ′Γ (m)), where m is the intended
companion node of n (i.e., the strict ancestor of n such that fmΓ (m) = fmΓ (n) = U ′). From the
definition of T′Γ and the fact that each TΓ,Q is a TNF tableau we observe the following:

(1) ρ ′Γ (m) = Un, and m is the only internal node whose formula isU ′.
(2) Since pΓ (m) is the parent of m, ρ ′Γ (pΓ (m)) = σZ ′′. for some Z ′′.
(3) Either pΓ (m) is the root of TΓ (i.e., p (m) = rΓ), or p (p (m)), the grandparent of m, is defined,
and ρ ′Γ (p (p (m))) = Thin. In either case, from the definition of the construction it can be
shown that st(λΓ (m)) =

⋃
Q ∈Q≺ st(λΓ,Q (m)).

Because each TΓ,Q is a tableau it follows that for each Q ∈ Q≺, n is terminal in TΓ,Q and thus
st(λΓ,Q (n)) ⊆ st(λΓ,Q (m)). Also, since invariant I3 holds of n in T′Γ we have that st(λ′Γ (n)) ⊆⋃

Q ∈Q≺ st(λΓ,Q (n)). We can now reason as follows:

st(λ′Γ (n)) ⊆
⋃

Q ∈Q≺

st(λΓ,Q (n)) ⊆
⋃

Q ∈Q≺

st(λΓ,Q (m)) = st(λ′Γ (m))

to see that n is terminal in T′Γ and thus T
′
Γ is indeed a tableau.

We now show that T′Γ is successful, compliant with ≺
′, and (Γ,Φ)-conformant. Before doing that,

however, we remark on properties of dependency relations in T′Γ that will be used in the arguments
to follow. To begin with, the following holds of all n1,n2, s1, and s2 such that s2 <n2,n1 s1 in T

′
Γ :

for every Q ∈ Q≺ such that s1 ∈ st(λΓ,Q (n1)), either s2 ∈ st(λΓ,Q (n2)), and thus,
s2 <n2,n1 s1 in TΓ,Q , or there exists Q

′ such that Q ′ � Q such that s2 ∈ st(λΓ,Q ′ (n2)).

This is immediate from the definition of <n2,n1 (Definition 6.14) and T
′
Γ : the need for the Q

′ case
comes from the construction used for rules ∨ and 〈K〉.10 An inductive argument based on the
definition of <: lifts this result to n1,n2, s1, and s2 such that s2 <:n2,n1 s2 in T

′
Γ : for allQ ∈ Q≺ such

that s1 ∈ st(λΓ,Q (n1)), either s2 ∈ st(λΓ,Q (n2)) and s2 <:n2,n1 s1 in TΓ,Q , or there existsQ
′ � Q such

that s2 ∈ st(λΓ,Q ′ (n2)).
We now establish that T′Γ is successful by showing that every leaf in T

′
Γ is successful (cf. Defi-

nition 6.13), which amounts to showing that for each leaf n, st(λ′Γ (n)) ⊆ || fmΓ (n) | |TVS
. There are

four cases to consider.

fmΓ (n) = Z . Analogous to the same case in the proof of Lemma 8.15.
fmΓ (n) ∈ {Z ′′,¬Z ′′} for some Z ′′ � Z free in σ ′Z ′.Γ. Analogous to the same case in the proof

of Lemma 8.15.
n is a ν-leaf. In this case, fmΓ (n) is successful by definition.
n is a μ-leaf. Let m be the companion node of n; we must show that <:m is well-founded in T

′
Γ .

Suppose to the contrary that this is not the case, i.e., that there is an infinite descending chain

10An analogous property is used in the proof of Lemma 8.15.
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· · · <:m s2 <:m s1 with each si ∈ st(λ′Γ ((m)). From the definition of <: (cf. Definition 6.16) it
follows that for all j > 1, sj <:nj,m sj−1 in T

′
Γ for some companion leaf nj ofm (note that n is

one of these nj ). Since each TΓ,Q is successful we know that <:m in TΓ,Q is well-founded for
any Q ∈ Q≺. Recall also that � is a well-ordering on Q≺. Now consider · · · <:m s2 <:m s1.
Since s1 ∈ st(λ′Γ (m)) invariant I3 guarantees that s1 ∈ st(λΓ,Q (n1)) for some Q ∈ Q≺. Now
consider the sj , j > 1. Since each sj <:nj ,m s1 in T

′
Γ the preceding argument ensures that

either sj <:n,m s1 in TΓ,Q , and thus sj <:m s1 in TΓ,Q , or there exists s
′ ∈ S such that [s ′] � Q

and sj ∈ st(λΓ,[s ′] (nj )). However, <:m in TΓ,Q is well-founded, so only finitely many of the
sj can satisfy sj <:m s1 in TΓ,Q ; there must be some j > 1 such that sj ∈ st(λΓ,[s ′] (n2)) some
[s ′] � Q . But then, for · · · <:m s2 <:m s1 to be an infinite descending chain there must be an
infinite descending chain in �. As � is well-founded, this is a contradiction, and <:m must
be well-founded in T′Γ , meaning n is a successful leaf.

To prove compliance of T′Γ with ≺
′, assume that s2 <:rΓ s1 in T

′
Γ ; we must show that s2 ≺

′ s1. Let
n be a companion leaf of rΓ such that s2 <:n,rΓ s1. From the arguments above we know that s1 ∈
st(λΓ,Q (rΓ )) for someQ ∈ Q≺; assume furtherQ is the minimum such element in Q≺ with respect
to � (which is guaranteed to exist because � is a well-ordering on Q≺). Also, either s2 <:n,rΓ s1 in
TΓ,Q or there is Q

′ � Q such that s2 ∈ st(λΓ,Q ′ (n)). In the former case s2 <:rΓ s1, and the fact that
TΓ,Q is successful and compliant with ≺′Q ⊆ ≺

′ guarantees that s2 ≺′ s1. In the latter case, since n

is a companion leaf of rΓ we know that s2 ∈ st(λΓ,Q (rΓ )) and s2 ∈ st(λΓ,Q ′ (rΓ )). Moreover, the fact

that Q is minimum ensures that s1 � st(λΓ,Q ′ ) = S ′Q ′ = | | σ
′Z ′.Γ | |TVQ′

. However, since ≺′ is locally
consistent with ≺ means that s1 ⊀′ s2, and as ≺′ is total it must be that s2 ≺′ s1.
We now prove (Γ,Φ)-conformance for T′Γ . So fix x ∈ S ,y ∈ S

′
[x ]
and x ′ <:n′,rΓ y where fmΓ (n′) =

Z . Note that x ′ ∈ ≺−1 (S ). We must show that x ′ ≺ x . From facts established above we know that
either x ′ <:n′,rΓ y in TΓ,[x ], or there exists a Q � [x] such that x ′ ∈ st(λΓ,Q (n′)). In the former
case, the success of T′Γ,Q guarantees that x

′ ∈ V[x ] (Z ) = ≺−1 ([x]), meaning x ′ ≺ x . In the latter

case, x ′ ∈ VQ (Z ) = ≺−1 (Q ); since ≺ is total and Q � [x] it follows that ≺−1 (Q ) ⊆ ≺−1 ([x]), so
x ′ ∈ ≺−1 ([x]) and x ′ ≺ x .

Construction of TΓ . We now show how to construct successful TNF tableau TΓ for sequent

S ′ �T ,VS
ε σ ′Z ′.Γ that is compliant with ≺′ and (Γ,Φ)-conformant. We begin by noting that

since (S ′,≺′) is a σ ′-compatible, total qwf support structure for дS , the induction hypothesis and
Lemma 8.12 guarantee the existence of a successful TNF tableau

TΓ,S = (T, ρΓ,S ,T ,VS , λΓ,S )

for sequent S ′ �T ,VS
ε σ ′Z ′.Γ that is compliant with ≺′ and structurally equivalent to TΓ,Q for any

Q ∈ Q≺. We now build TΓ using a coinductive definition of λΓ that merges T
′
Γ and TΓ,S in a node-

by-node fashion, starting with rΓ , the root, so that the resulting tableau is (Γ,Φ)-conformant. The
construction also ensures that the invariants below, which are adapted from the construction of
T′Γ , also hold.

I1. If ρΓ (n) is defined then the sequents assigned by λΓ to n and its children are consistent with
the rule application ρΓ (n).

I2. fm(λΓ (n)) = fm(n).
I3. st(λΓ (n)) ⊆ st(λ′Γ (n)) ∪ st(λΓ,S (n)).
I4. dl(λΓ (n)) = dlΓ (n).

(That is, λ′Γ is replaced by λΓ , and
⋃

Q ∈Q≺ st(λΓ,Q (n)) is replaced by st(λ′Γ (n)) ∪ st(λΓ,S (n)).) As
before, the definition of λΓ begins by assigning a value to λΓ (rΓ ) so that invariants I2–I4 are satisfied.
The coinductive step then assumes that n satisfies these invariants and defines λΓ for the children
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of n and ρΓ (n) so that I1 holds for n and I2–I4 hold for each child. The details of the construction are
very similar to those for T′Γ and are omitted, as are the arguments that TΓ is successful, compliant
with ≺′, and (Γ,Φ)-conformant.

Step 4 of proof outline: construct tableau for S �T ,Vε σZ .Φ. To complete the proof we construct
tableau TΦ = (TΦ, ρΦ,T ,V, λΦ), where TΦ = (NΦ, rΦ,pΦ, csΦ), from TΦ′ and TΓ and establish that
it is successful and compliant with (S,≺). Without loss of generality we assume that N′Φ ∩NΓ = ∅,
and define NΦ = NΦ′ ∪ NΓ . The construction of TΦ essentially works by embedding TΓ as a sub-
tableau of TΦ′ underneath the leaf nW of T

′
Φ whose formula isW . Some additional housekeeping

details are necessary to ensure the result is a tableau in TNF.

— Suppose n ∈ NΦ′ and λΦ′ (n) = X �T ,V
′

Δ Φ′. Then λΦ(n) = X �T ,VΔ Φ′[W := σ ′Z ′.Γ]. This
replaces all instances ofW by σ ′Z ′.Γ and changes the valuation fromV′ toV .

— Set ρΦ(nW ) = Thin; for all other nodes in NΦ use the value of ρΦ′ or ρΓ as appropriate.

— Suppose n ∈ NΓ and λΓ (n) = X �T ,VS

Δ Γ′. Then λΦ(n) = X �T ,V
(U=σ Z .Φ) ·Δ Γ′[Z := U ]. This

adjusts the definition list in n, replaces all free occurrences of Z byU , and updatesVS toV .
To complete the proof of the lemma we must show that TΦ is a successful TNF tableau that is
compliant with (S,≺). That TΦ is indeed a tableau is immediate from its construction and the fact
that TΦ′ and TΓ are tableaux: in particular, every leaf in TΦ corresponds either to a leaf in TΦ′ or to a
leaf in TΓ and is therefore guaranteed to be terminal. The TNF property follows in a similar fashion.
We now argue that TΦ is successful and compliant with (S,≺). We begin by noting that since TΦ′

and TΓ are successful, every leaf n such that fm(λΦ(n)) � U , where U is the definitional constant
associated with σZ .Φ, is also successful in TΦ. Proving that TΦ is successful therefore reduces to
proving the success of eachU -leaf. If we can show compliance of TΦ with (S,≺), then the success
of each U -leaf also follows, for in the particular case when σ = μ, the well-foundedness of <:r′ ,
where r′ = cs (rΦ) is the unique (due to TNF)U -companion node in TΦ, follows immediately from
the well-foundedness of ≺. To this end, suppose that s, s ′ ∈ S are such that s ′ <:r′ s; we must show
that s ′ ≺ s . Since s ′ <: r′s holds there must exist a U -leaf n such that s ′ ∈ st(λΦ(n)) and s ′ <:n,r′ s
in TΦ. There are two cases to consider.

(1) If n′ is a leaf in TΦ′ , the compliance of TΦ′ with respect to (S,≺) guarantees that s ′ ≺ s .
(2) If n′ is a leaf in TΓ , there must exist y ∈ || σ ′Z ′.Γ | |TV[s] such that s

′ <:n,rΓ y in TΦ, and thus,

TΓ , and y <:rΓ,r′ s . Since TΓ is (Γ,Φ)-conformant it must follow in this case that s ′ ≺ s .

This completes the proof. �

With these lemmas in hand we may now state and prove the completeness theorem.

Theorem 8.18 (Completeness). Let T = (S,−→) be an LTS and V a valuation, and let S and Φ

be such that S ⊆ || Φ | |TV . Then S �T ,Vε Φ has a successful tableau.

Proof. The proof proceeds as follows. Let σ1Z1.Φ1, . . . ,σnZn .Φn be the top-level fixpoint sub-
formulas of Φ, and let W1, . . . ,Wn be fresh variables. Define Φ′ to be the fixpoint-free formula
containing exactly one occurrence of eachWi and such that

Φ = Φ′[W1, . . . ,Wn := σ1Z1.Φ1, . . . σnZn .Φ2].

Also define Si = | | σiZi .Φi | |TV for each i = 1, . . .n, and letV
′ be defined by

V′ = V[W1, . . .Wn := S1, . . . SN ].

Lemma 8.17 guarantees a successful tableau T′ for S �T ,V
′

ε Φ′.
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Also, for each i = 1, . . . ,n define (Si ,≺i ) to be a σi -maximal support structure for | | Zi .Φi | |TV .
Lemma 8.17 guarantees a successful tableau Ti for each sequent Si �T ,Vε σiZi .Φi . We may now
construct a successful tableau T by making each leaf in T′ whose formula isWi the parent of the
root of tableau Ti , setting the rule for this former leaf node to be Thin and replacing all occurrences
ofWi by σiZi .Φi . The resulting tableau is guaranteed to be successful. �

9 PROOF SEARCH

The previous sections have given an alternative formalization of a proof system for the modal
mu-calculus and proven it sound and complete. In this section and the next, we show how our
approach can be adapted in various useful ways. This section focuses on an alternative success
condition to the general one in Section 6 that enables proof search to be automated in some cases.
From an application perspective, the most difficult aspect of the proof system in this article is the
need to check the well-foundedness of the extended-dependency orderings for nodes labeled with
least fixed-point formulas. In the abstract setting of infinite-state LTSs considered in this article,
unfortunately there is really no alternative. In many situations, however, this well-foundedness
can be manifest from additional semantic information present in the definition of the transition re-
lations. One interesting such case involves modifying the success criterion for μ-leaves so that they
are only successful if their set of states is empty. Intuitively, this means that during proof construc-
tion we simply keep unfolding nodes labeled with definitional constants that are associated with
a least fixpoint formula until we reach a node with an empty state set. Of course, with this mod-
ification, the unfolding procedure does not necessarily terminate, and hence the proof system is
not complete for infinite-state LTSs in general. However, for instance for the class of infinite-state
transition systems induced by timed automata, the resulting tableaux method is complete [67] for
the alternation-free mu-calculus. Furthermore, even in case the modification is not complete, the
result is a sound semi-decision procedure in the sense that, if a (finite) proof tree is obtained, the
proof tree is successful.
We first strengthen the notion of successful tableau (Definition 6.13) in such a way that a μ-leaf
is only successful if it has an empty set of states.

Definition 9.1 (Strongly Successful Complete Tableau). Let T = (T, ρ,T ,V, λ) be a complete
tableau. Then leaf node n in T is strongly successful iff one of the following holds.

(1) fm(n) = Z for some Z ∈ dom(dl(n)) and st(n) ⊆ V (Z ).
(2) fm(n) = ¬Z for some Z ∈ dom(dl(n)) and st(n) ∩V (Z ) = ∅.
(3) n is a ν-leaf; or
(4) n is a μ-leaf with st(n) = ∅.
T is strongly successful iff all its leaves are strongly successful.

The only difference between strongly successful tableaux and successful tableaux (Defini-
tion 6.13) is in the μ-leaves. For the μ-leaves, our new criterion gives a much simpler formulation,
that is, the set of states in a strongly successful μ-leaf is empty. As every μ-node n in a strongly suc-
cessful complete tableau has an empty state set, it can be seen that relation <:m for μ-companion
nodem is ∅ and, therefore, trivially well-founded. Thus, every strongly successful complete tableau
is also successful. We, therefore, have the following:

Theorem 9.2. Fix LTS (S,→) of sort Σ and valuation V . Let T = (T, ρ,T ,V, λ) be a strongly

successful complete tableau for sequent s ∈ STVar, where dl(s) = ε . Then s is valid.

Proof. Immediate from Theorem 7.20 and the fact that every strongly successful complete
tableau is also a successful tableau. �
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As noted above the proof system with the modified success criterion given in this section is not
in general complete, although cases where it is complete can be characterized [25, 66].
We close this section by noting that our ability to alter the definition of successful tableau to
successful strongly complete tableau is due to our formalization of trees and tableaux. In particular,
our proofs permit the application of proof rules to nodes even if the nodes are terminal. In the
setting of [13], it is not clear if this use of proof rules is allowed.

10 A TIMED MODAL MU-CALCULUS

This section gives another illustration of the utility of the mu-calculus proof-system framework
developed in this article. In particular, we show how to extend the proof system described in Sec-
tion 6 to TTSs and properties expressed in a timed extension of the mu-calculus, which enriches
the mu-calculus with two modalities for expressing properties of continuous timed behavior. Be-
cause of their structure, the proofs of soundness and completeness given earlier only need to be
extended with cases for the new modal operators to cover the timed setting.
We begin by defining TTSs and the extension of the mu-calculus to be considered. TTSs are
infinite-state transition systems used to give semantics to, for example, timed and hybrid automata.
Besides introducing transitions labeled by time, TTSs also capture continuous as well as discrete
system behavior.

Definition 10.1 (Timed Sort). Sort Σ is a timed sort iff R≥0 ⊆ Σ, i.e., every non-negative real
number is an element of Σ. If Σ is a timed sort we write act(Σ) = Σ \ R≥0 for the set of non-
numeric elements in Σ. We sometimes refer to elements of act(Σ) as actions and δ ∈ R≥0 as time

delays.

Definition 10.2 (TTS [9]). LTS (S,→) of timed sort Σ is a TTS if it satisfies the following condi-
tions:

(1) For all states s ∈ S, s 0−→ s , i.e., the transition system is time-reflexive.
(2) For all states s, s ′, s ′′ ∈ S and δ ∈ R≥0 if s δ−→ s ′ and s δ−→ s ′′ then s ′ = s ′′, i.e., the transition
system is time-deterministic.

(3) For all states s, s ′, s ′′ ∈ S and δ ,δ ′ ∈ R≥0, if s δ−→ s ′ and s ′ δ ′−−→ s ′′ then s δ+δ ′−−−−→ s ′′, i.e., the
transition system is time-additive.

(4) For all states s, s ′ ∈ S and δ ∈ R≥0, if s δ−→ s ′ then for all δ ′,δ ′′ ∈ R≥0 with δ = δ ′+δ ′′, there
exists s ′′ ∈ S such that s δ ′−−→ s ′′ and s ′′ δ ′′−−→ s ′, i.e., the transition system is time-continuous.

In a TTS a transition can either be labeled by an action, i.e., those labels in act(Σ), or a time
delay δ ≥ 0. Intuitively, if a system is in state s and s δ−→ s ′ then the system is in state s ′ after δ
units of time have elapsed, assuming no action has occurred in the interim.
The timed mu-calculus of [25] extends the mu-calculus from Definition 5.6 with a timed modal
operator ∀Φ1 (Φ2). This operator is analogous to the release operator of LTL, in the sense that for
∀Φ1 (Φ2) to hold of a state, either Φ2 must hold along every time instant of the time trajectory
emanating from s , or there is a point along the trajectory in which Φ1 holds, which releases the
system from having to maintain Φ2. These intuitions are formalized below.

Definition 10.3 (Timed Mu-calculus Syntax [25]). Let Σ be a timed sort and Var a countably infi-
nite set of propositional variables. Then formulas of the timed modal mu-calculus over Σ and Var
are given by the following grammar:

Φ ::= Z | ¬Φ′ | Φ1 ∧ Φ2 | [K]Φ′ | ∀Φ1 (Φ2) | νZ .Φ′,

where K ⊆ Σ, Z ∈ Var, and formulas of the form νZ .Φ′, Z are such that Z must be positive in Φ′.
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Besides the standard dualities in Section 5.2, we also have the following dual for ∀Φ1 (Φ2):

∃Φ1 (Φ2) = ¬∀¬Φ1 (¬Φ2).

Also in analogy with LTL, ∃Φ1 (Φ2) can be seen as an until operator: specifically, a state satisfies
∃Φ1 (Φ2) if Φ2 is true after some time delay from s , and until that time instant Φ1 must be true.
To define the semantics of the timed mu-calculus, we fix some notation for time delays.

Definition 10.4 (Time Delays/successors). Let T = (S,→) be a TTS of timed sort Σ, and let
δ ∈ R≥0.
— We define succ ∈ S × R≥0 →⊥ S by succ(s,δ ) = s ′ iff s δ−→ s ′. This is well-formed because
of the time-determinacy of −→. Note succ(s,δ )⊥ iff s �δ−→. Also, time continuity implies that if
δ ′ ≥ δ and succ(s,δ )⊥ then succ(s,δ ′)⊥, and if δ ′ ≤ δ and succ(s,δ ) ∈ S then succ(s,δ ′) ∈ S.

— If s ∈ S then we write
del (s ) = {δ ∈ R≥0 | s δ−→}

succ(s ) = {succ(s,δ ) | δ ∈ del (s )}
succ< (s,δ ) = {succ(s,δ ′) | δ ′ < δ ∧ δ ′ ∈ del (s )}
succ≤ (s,δ ) = {succ(s,δ ′) | δ ′ ≤ δ ∧ δ ′ ∈ del (s )}

for all possible delays, the states reachable by any delay, the states reachable by delays less
than δ , and states reachable by delays less than or equal to δ , respectively, from s .

For the semantics of the timed mu-calculus, we follow the definition in [26].

Definition 10.5 (Timed Mu-calculus Semantics). Let T = (S,→) be a TTS of sort Σ and V ∈
Var → 2S a valuation. Then the semantic function | | Φ | |TV ⊆ S, where Φ is a timed mu-formula,
is defined as in Definition 5.9, extended with the following clause:

| | ∀Φ1 (Φ2) | |TV = {s ∈ S | ∀δ ∈ del (s ) :
(
succ< (s,δ ) ∩ || Φ1 | |TV

)
= ∅ =⇒ succ(s,δ ) ∈ || Φ2 | |TV }.

Intuitively, s satisfies ∀Φ1 (Φ2) if for every possible delay transition from s , either the target state
satisfiesΦ2, or there is a delay transition of smaller duration whose target state satisfiesΦ1, thereby
releasing s of the responsibility of keeping Φ2 true beyond that delay. For the dual operator one
may derive the following semantic equivalence:

| | ∃Φ1 (Φ2) | |TV = {s ∈ S | ∃δ ∈ del (s ) : succ< (s,δ ) ⊆ || Φ1 | |TV ∧ succ(s,δ ) ∈ || Φ2 | |TV }.
Based on this characterization, one can see that ∃Φ1 (Φ2) captures a notion of until. Specifically, s
satisfies ∃Φ1 (Φ2) if there is a delay transition from s leading to a state satisfying Φ2, and all delay
transitions of strictly shorter duration from s lead to states satisfying Φ1.
We now extend our proof system to the timed mu-calculus setting. The notions of timed defini-

tion list and timed sequent are the obvious generalizations of the notions in Definitions 6.1 and 6.6,
as is the notion of the semantics | | s | | of timed sequent s, which generalizes Definition 6.7. The se-
quent extractor functions st, dl and fm also carry over to the timed setting in the expected fashion.
To obtain proof rules for the timed mu-calculus, we extend those from Figure 1 with the two
rules named ∀ and ∃ as shown in Figure 2. Like rule 〈K〉, rule ∃ uses a witness function f . In this
case f is intended to identify, for every s ∈ S , a witness delay f (s ) ∈ del (s ) allowed from s such
that the state succ(s, f (s )) reached by delaying f (s ) time units from s satisfies Φ2 and also such
that all states reached from s using smaller delays, i.e., those states in succ< (s, f (s )), must satisfy
Φ1.
Proof rule ∀ also uses a witness function д, but its functionality is a bit more complicated than
the witness function used in rule ∃. In particular, д takes two arguments, a state and a delay, and
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Fig. 2. Proof rules for timed modal operators (extends Figure 1).

while д may be partial, it is required that for any s ∈ S , д(s,δ ) is defined for every δ ∈ del (s ). If
δ ∈ del (s ) and д(s,δ ) < δ then д(s,δ ) is intended to be a delay such that the state reached from
s via that delay satisfies the “release” formula Φ1. If д(s,δ ) = δ , then the implication is that no
shorter delay exists for establishing Φ, and the state reached from s after δ has not been released
from the obligation to keep Φ2 true.
We sometimes refer to the function f mentioned in the ∃ rule as an ∃-function and the function

д referred to in the ∀ rule as a ∀-function. In what follows we use

RApplT = RAppl ∪ {(∃, f ) | f is an ∃-function} ∪ {(∀,д) | д is a ∀-function}
for the set of rule applications for the timed mu-calculus. The definitions of partial and complete
tableaux (Definition 6.9) carry over immediately to partial and complete timed tableaux, with
RApplT replacing RAppl appropriately. Observe that, in particular, no new terminal nodes need
to be added: due to time reflexivity, s ∈ succ(s ) for any state s , and thus type-correct ∃- and ∀-
functions can always be given when applying the ∃ and ∀ rules. (Of course the chosen functions
may not necessarily lead to successful tableaux.) Likewise, the definitions of successful terminals
and successful timed tableaux are the obvious adaptations of the notions given in Definition 6.13.
If n is a node in a timed partial tableau then the semantics | | n | | of n carries over straightforwardly.
We now extend the local dependency ordering (Definition 6.14) to timed tableaux as follows:

Definition 10.6 (Timed Local Dependency Ordering). Let n,n′ be proof nodes in timed tableau T,
with n′ ∈ c (n) a child of n. Then s ′ <n′,n s iff s ′ ∈ st(n′), s ∈ st(n), and one of the following hold:

(1) ρ (n) = [K] and s K−→ s ′; or
(2) ρ (n) = (〈K〉, f ) and s ′ = f (s ); or
(3) rn(ρ (n)) � {[K], 〈K〉,∀,∃} and s = s ′; or
(4) ρ (n) = (∃, f ), cs (n) = n1n2, and either
— n′ = n1 and s

′ ∈ succ< (s, f (s )), or
— n′ = n2 and s

′ = succ(s, f (s )); or
(5) ρ (n) = (∀,д), cs (n) = n1n2, and either
— n′ = n1 and s

′ = succ(s,д(s,δ )) for some δ ∈ del (s ) with д(s,δ ) < δ , or
— n′ = n2 and s

′ = succ(s,д(s,δ )) for some δ ∈ del (s ) with д(s,δ ) = δ .
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The dependency ordering �n′,n and extended dependency ordering <:n′,n may be adapted to
timed tableaux in the obvious way, using the timed local dependency ordering as a basis. It follows
using the lines of the proof of Lemma 6.20 and the definitions of the ∃ and ∀ rules that the timed
local dependency ordering satisfies the semantic sufficiency property.

Lemma 10.7 (Semantic Sufficiency of Timed <n′,n). Let n be an internal proof node in partial

timed tableau T, and s ∈ st(n) such that for all s ′ and n′ with s ′ <n′,n s , s ′ ∈ | | n′ | |. Then s ∈ || n | |.

10.1 Soundness

We showhow to generalize the soundness results from Section 7 to timed tableaux.We first observe
that the local soundness result from Lemma 7.1 carries over to the timed setting immediately, since
it solely relies on the semantic sufficiency result (Lemma 10.7) for <n,n′ . We next show how the
node formulas from Definition 7.2 generalize to nodes in a timed tableau.

Definition 10.8 (Timed Node Formulas). Let T = (T, ρ,T ,V, λ) be a timed tableau, with CT the
companion nodes of T. For each m ∈ CT let Zm be a unique fresh variable, with VarT = {Zm |
m ∈ CT} the set of all such variables. Then for node n ∈ N formula P (n) is defined inductively as
follows. Cases 1–10 are as in Definition 7.2. The cases for the ∃ and ∀ operators are as follows:
(11) If ρ (n) = (∃, f ) and cs (n) = n1n2 then P (n) = ∃P (n1 ) (P (n2)).
(12) If ρ (n) = (∀,д) and cs (n) = n1n2 then P (n) = ∀P (n1 ) (P (n2)).

Valuation consistency (Definition 7.4) and the results in Lemmas 7.5, 7.6, and 7.7 and Corol-
lary 7.8 carry over immediately to the timed setting. The definitions of support dependency
ordering and influence extensions of valuations (Definitions 7.9 and 7.12) and the associated
Lemmas 7.11 and 7.14 and Corollary 7.15 likewise generalize to timed tableaux in the obvious way.
Using these results we can prove that (st(n), <:+n ) is a support structure for companion nodes n in
timed tableaux, generalizing Lemma 7.16.

Lemma 10.9. Let T = (T, ρ,T ,V, λ) be a successful timed tableau with n ∈ CT a companion

node of T and n′ the child of n in T. Also let S = st(n). Then (S, <:+n ) is a support structure for

| | Zn.P (n′) | |TVn
.

Proof. Fix successful timed tableau T = (T, ρ,T ,V, λ) with T = (N, r,p, cs ) and let n ∈ CT
with S = st(n). We prove that the following statements hold for every m ∈ D (n) and s ∈ S ; which
implies the lemma.

S1. For all x such that x ≤:m,n s , x ∈ || P (m) | |TVm,x
.

S2. If m ∈ CT, m
′ = cs (m) and x satisfies x ≤:m,n s then (Sx , <:m,x ) is a support structure for

| | Zm.P (m′) | |TVm,x
, where Sx = (<:∗m)−1 (x ) and <:m,x = (<:+m)�Sx .

Analogous to the proof of Lemma 7.16, the proof proceeds by tree induction on Tn. For m ∈ D (n)
and s ∈ S we have to prove that statements S1 and S2 hold. The proof proceeds by case analysis on
the form of ρ (m); all cases are completely analogous to those in the proof of Lemma 7.16, except the
proofs of statement S1 in case ρ (m) ∈ {(∀,д), (∃, f )}. We here give the proof for ρ (m) = (∀,д), the

proof for ρ (m) = (∃, f ) is similar, albeit slightly less involved. In this case, m = X �T ,VΔ ∀Φ1 (Φ2)

for some X , Φ1 and Φ2, cs (m) = m′1m
′
2, m

′
i = Xi �T ,VΔ Φi for i = 1, 2, and X1 = д< (X ), S2 = д= (X ).

The induction hypothesis ensures that S1 holds for each t ∈ Xi andm′i ; we must show that S1 holds

for m and s . To this end, let x ∈ X be such that x ≤:m,n s; we must show that x ∈ || P (m) | |TVm,x
.

The result follows from the semantics of ∀ if we prove for all δ ∈ del (x ) that either succ< (x ,δ ) ∩
|| P (m′1) | |TVm,x

� ∅ or succ(x ,δ ) ∈ || P (m′2) | |TVm,x
. So, fix arbitrary δ ∈ del (x ). Suppose д(x ,δ ) = δ ,
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and let x ′ = succ(x ,д(x ,δ )); then x ′ <m′2,m
x . The pseudo-transitivity of ≤:m,n guarantees that

x ′ ≤:m′2,n s , and the induction hypothesis ensures that x ′ ∈ | | P (m′2) | |TVm′
2
,x ′
. Corollary 7.15 implies

that x ′ ∈ | | P (m′2) | |TVm,x
. Next, suppose д(x ,δ ) = δ ′ < δ , and let x ′′ = succ(x ,д(x ,δ ′)); then x ′′ ∈

succ< (x ,д(x ,δ )), and x ′′ <m′1,m
x . The pseudo-transitivity of ≤:m,n guarantees that x

′′ ≤:m′1,n s ,

and the induction hypothesis ensures that x ′′ ∈ | | P (m′1) | |TVm′
1
,x ′′
. Corollary 7.15 guarantees that

x ′′ ∈ | | P (m′1) | |TVm,x
. As x ′′ ∈ succ< (x ,д(x ,δ )), succ< (x ,д(x ,δ )) ∩ || P (m′1) | |TVm,x

� ∅. Hence it
follows from the semantics of ∀ that x ∈ || P (m) | |TVm,x

. �

Corollary 7.17 again immediately generalizes to timed tableaux using the previous lemma. The
following proof of soundness follows the exact same line of reasoning as the proof of Theorem 7.20.

Theorem 10.10 (Soundness of Timed Mu-calculus Proof System). Fix TTS (S,→) of timed

sort Σ and valuationV , and let T = (T, ρ,T ,V, λ) be a successful timed tableau for sequent s, where

dl(s) = ε . Then s is valid.

Observe that the results in this section only ever involve adding cases for the new operators to
definitions and proofs from earlier sections that use case distinction on the operators. In all of the
cases we considered, the results that need to be added for these new operators are straightforward,
and follow the same line of reasoning as the other operators in the mu-calculus. This illustrates
the extensibility of the proof methodology we have developed, at least for proving soundness of
tableaux when adding new operators to the mu-calculus.

10.2 Completeness

We now turn our attention to establishing completeness of the tableaux construction for the timed
mu-calculus. The construction used to establish completeness in Section 8 can be straightforwardly
adapted to account for the new modalities introduced by the timed mu-calculus. This, again, illus-
trates the extensibility of the proofs given in this article. Given the similarities of the proofs, and
due to page limitations, we include the proofs in the appendix.
We first note that the notion of TNF introduced in Definition 8.10 carries over to timed tableaux
as well; the proof of the corresponding Lemma 8.12 only needs to be adapted by including ∀ and
∃ in case that rn(ρ (n)) ∈ {∧,∨, [K], 〈K〉}. The details of that adaptation are routine and left to
the reader. The notion of tableau compliance (Definition 8.14) also generalizes to the timed setting
in the obvious way. We next establish the existence of successful TNF timed tableaux for valid
sequents. This lemma mirrors the analogous result (Lemma 8.17) proved earlier for the non-timed
mu-calculus, and the proof is a straightforward extension of the earlier proof.

Lemma 10.11 (Timed Fixpoint Completeness). Fix TTS T and timed mu-calculus formula Φ,

and let Z ,V,σ , and S be such that S = | | σZ .Φ | |TV . Also let (S,≺) be a σ -compatible, total, qwf

support structure for | | Z .Φ | |TV . Then S �T ,Vε σZ .Φ has a successful TNF timed tableau compliant

with (S,≺).

Proof. This proof is completely analogous to the proof of Lemma 8.17. In those places where
the proof involves merging tableaux, the construction for merging nodes with rule names ∀ and ∃
is similar to that of 〈K〉.11 �

With these lemmas in hand we may now state and prove the completeness theorem.

11The appendix includes a completeness proof of formulas with a single fixed point that shows in detail for nodes with

rule names ∀ and ∃ are merged.
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Theorem 10.12 (Completeness). Let T = (S,−→) be a TTS andV a valuation, and let S ⊆ S and

Φ be a timed mu-calculus formula such that S ⊆ || Φ | |TV . Then S �T ,Vε Φ has a successful tableau.

Proof. Analogous to the proof of Theorem 8.18, but using Lemma 10.11 instead of Lemma 8.17.
�

11 CONCLUSIONS AND FUTURE WORK

The work in this article was motivated by a desire to give a sound and complete proof system for
the timed mu-calculus for infinite-state systems. We intended to do so by modifying an existing
proof system for infinite-state systems and the untimed mu-calculus due to Bradfield and Stir-
ling [11, 13], but this proved difficult because of the delicacy of their soundness and completeness
arguments. Instead, we have given an alternative approach, based on explicit tableau construc-
tions, for the untimed mu-calculus. We then showed how these constructions admitted reasoning
about modifications to the core proof system, including new proof-search strategies and new log-
ical modalities, including those in the timed mu-calculus. In the end we achieved our initial goal
of a sound and complete proof system for the timed mu-calculus that is built on a new sound and
complete proof system for the untimed mu-calculus.
Our proof techniques are based on lattice-theoretic results that give new characterizations of
fixpoints of monotonic functions over complete lattices in terms of a notion we call support struc-

tures. Using this approach, we are able to present proofs that, in contrast to the results in [11], do
not require reasoning about ordinal unfoldings of formulas, and that is extensible to other termi-
nation conditions and modalities. Our completeness results rely on direct constructions of proof
tableaux for valid sequents; this also facilitates extensibility.
We have illustrated our new approach by showing that its soundness proof straightforwardly
carries over to the proof system where μ-nodes with non-empty sets of states are always unfolded.
Although we have not considered this in this article, we expect this proof system can be shown to
be complete for restricted but useful infinite-state systems, such as those with finite bisimulation
quotients. Additionally, we have presented a proof system for an extension of the mu-calculus
with two timed modalities, and shown our soundness and completeness proof immediately carry
over.

Future work. The proof techniques presented in this article enable us to prove soundness of ex-
tensions and modifications of the proof system for infinite-state systems. In particular, soundness
of the proof system for the timed mu-calculus opens opportunities for model checking such sys-
tems. We plan to implement this proof system, dealing with sets of states symbolically, and thus
extending model checkers for alternation-free timed mu-calculi [25] for timed automata, a class of
TTSs, to the full mu-calculus.
Furthermore, the proof of soundness and completeness for the timed mu-calculus only involves
adding cases for the newly added operators to the proofs of results about the base proof system.
Each of these cases follows the same line of reasoning as the results for other operators. We, there-
fore, expect that the soundness and completeness results can be generalized to only refer to prop-
erties about the local dependencies of the operators in the mu-calculus, and our support structure
results. It would be interesting to investigate this direction, and simplify the proof obligations for
soundness and completeness when adding operators to the mu-calculus even further.
Another direction to be explored is how the soundness and completeness results in this article
can be adapted to the equational mu-calculus [20], and other equational theories such as Boolean
equation systems [50] and parameterized Boolean equation systems [29, 30]. In these formalisms
there are already unique identifiers (the left-hand side variables of the equations) for each fixpoint
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in the formalism, thereby possibly obviating the need for definition lists in the proof systems. The
mechanism of unfolding in the proof system needs to be adapted to deal with this difference.
Finally, another common extension of the mu-calculus used in the timed setting is to add freeze
quantification; see e.g., [9]. The extension of our proof rules to this setting should be similarly
straightforward as the extension we presented in this article, although the definitions of the un-
derlying transition systems would need extension to accommodate clock variables explicitly.

APPENDICES

A PROOFS FOR SECTION 4

We give the proof of Lemma 4.3: given monotonic function f over the subset lattice generated by
set S , and a setW ⊆ 2S of well-supported sets for f , set⋃W is well-supported for f .
The idea of the proof is as follows. We first orderW arbitrarily, but in a well-founded manner.
A well-founded relation for

⋃W is then constructed by taking the elements that are less that
x ∈ ⋃W from the first set inW containing x according to the ordering. The resulting relation is
then shown to induce a well-founded support structure on

⋃W .
The proof itself uses constructions over the ordinals, for which we use the von Neumann defi-
nition [16]: a well-ordered set α is a von Neumann ordinal iff it contains all ordinals preceding α .
The well-ordering on von Neumann ordinals is often written < and has the property that α < β
iff α ∈ β , which in turn is true iff α � β . Recall that in this article, we assume the Axiom of
Choice [37].

Proof of Lemma 4.3. To prove that
⋃W is well-supported for f , we first note that there is an

ordinal β that is in bijective correspondence withW . We then define ordinal-indexed sequences,
Xα and ≺α (α < β), with the property that (Xα ,≺α ) is a support structure for f , ≺α is well-
founded, and

⋃W =
⋃

α<β Xα . We subsequently show that ≺ =
⋃

α<β ≺α is well-founded and
that (

⋃W,≺) is a support structure for f , thereby establishing that
⋃W is well-supported for

f .
To this end, let |W| = β be the cardinality ofW (i.e., β is the least ordinal in bijective corre-
spondence toW), and let h ∈ β → W be a bijection. It follows thatW = {h(α ) | α < β }. Also
let o ∈ β → 2S×S be such that for any α < β , o(α ) ⊆ h(α ) × h(α ) is a well-founded binary relation
with the property that (h(α ),o(α )) is a support structure for f .
We now define the following ordinal-indexed sequences Xα , X

′
α and ≺α , α < β , of subsets of S

and binary relations on Xα , respectively, as follows, using transfinite recursion.

Xα =
( ⋃

α ′<α

Xα ′
)
∪ h(α ),

X ′α = h(α ) \
( ⋃

α ′<α

Xα ′
)
,

≺α =
( ⋃

α ′<α

≺α ′
)
∪
{
(x ′,x ) ∈ o(α ) | x ∈ X ′α

}
.

Note that Xα = (
⋃

α ′<α Xα ′ ) ∪X ′α and that (
⋃

α ′<α Xα ′ ) ∩X ′α = ∅. Based on these definitions, it is
easy to see that if α ′ < α then Xα ′ ⊆ Xα and ≺α ′ ⊆ ≺α . We now prove two properties of Xα and
≺α that will be used in what follows.

P1. For all α < β , (Xα ,≺α ) is a support structure over f .
P2. For all α < β , ≺α is well-founded.

To prove P1 we use transfinite induction. So fix α < β ; the induction hypothesis states that for
any α ′ < α , (Xα ′,≺α ′ ) is a support structure over f . Now consider x ∈ Xα ; we must show that
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x ∈ f (≺−1α (x )). There are two cases. In the first, x ∈ ⋃α ′<α Xα ′ , which means x ∈ Xα ′ for some
α ′ < α . In this case the induction hypothesis guarantees that (Xα ′,≺α ′ ) is a support structure,
meaning x ∈ f (≺−1α ′ (x )). Since ≺α ′ ⊆ ≺α it follows that

≺α ′
−1 (x ) ⊆ ≺α

−1 (x ),

and since f is monotonic and x ∈ f (≺−1α ′ (x )), also x ∈ f (≺−1α (x )). In the second case, x ∈ X ′α .
Here it is easy to see that

≺α
−1 (x ) = {x ′ | (x ′,x ) ∈ o(α )},

and since (h(α ),o(α )) is a support structure, it immediately follows that x ∈ f ({x ′ | (x ′,x ) ∈
o(α )}) = f (≺−1α (x )). P1 is thus proved.
To prove P2 we again use transfinite induction. So fix α < β . The induction hypothesis states
that for all α ′ < α , ≺α ′ is well-founded; we must show that ≺α is as well. So consider a descending
chain C = · · · ≺α x2 ≺α x1; it suffices to show that C must be finite. There are three cases to
consider.

C is a chain in
⋃

α ′<α ≺α ′ . In this case x1 ∈
⋃

α ′<α Xα ′ , meaning there is an α
′ < α such that

x1 ∈ Xα ′ . Since α1 < α2 implies ≺α1 ⊆ ≺α2 , it follows that each xi ∈ Xα ′ , each xi+1 ≺α ′ xi ,
and thatC is thus a descending chain in ≺α ′ . Since the induction hypothesis guarantees that
≺α ′ is well-founded, C must be finite.

C is a chain in o(α ). In this case, since o(α ) is well-founded, C must be finite.
C is a mixture of

⋃
α ′<α ≺α ′ and o(α ). In this case, from the definition of C and ≺α it follows

that C can be split into two pieces:
(1) an initial segment xi ≺α · · · ≺α x1, where i ≥ 1, xi ∈

⋃
α ′<α Xα ′ , and for all i > j ≥ 1,

x j ∈ X ′α and (x j+1,x j ) ∈ o(α ); and
(2) a segment · · · ≺α xi+1 ≺α xi , where for all j ≥ i , (x j+1,x j ) ∈

⋃
α ′<α ≺α ′ .

The previous arguments establish that each of these sub-chains must be finite, and thusC is
finite as well.

To finish the proof of the lemma, we note that the following hold, using arguments given above.

— (
⋃

α<β Xα ,
⋃

α<β ≺α ) is a support structure.
—
⋃

α<β ≺α is well-founded.
—
⋃W =

⋃
α<β Xα .

From the definitions it therefore follows that
⋃W is well-supported. �

B PROOFS FOR SECTION 6

We prove pseudo-transitivity of the dependency ordering relations. That is, (1) if s3 �n3,n2 s2 and
s2�n2,n1 s1 then s3�n3,n1 s1; (2) if s3 <:n3,n2 s2 and s2�n2,n1 s1 then s3 <:n3,n1 s1; and (3) if s3 <:n3,n2 s2
and s2 <:n2,n1 s1 then s3 <:n3,n1 s1.

Proof of Lemma 6.19. We prove the three parts separately.

(1) Assume s3 �n3,n2 s2. The result follows by induction on the definition of s2 �n2,n1 s1.
(2) Assume that s2 �n2,n1 s1. The proof proceeds by induction on the definition of s3 <:n3,n2 s2.
There are two cases to consider.
— s3 �n3,n2 s2. From the pseudo-transitivity of �n′,n (first part of this lemma) it follows that

s3 �n3,n1 s1, and thus s3 <:n3,n1 s1.
— There exists companion node m, with m � n2 and m � n3, and t , t

′ ∈ st(m) such that
s3 <:n3,m t ′, t ′ <:+m t and t �m,n2 s2. The first part of this lemma ensures that t �m,n1 s1, and
the definition of <:n3,n1 confirms s3 <:n3,n1 s1.
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(3) Assume that s3 <:n3,n2 s2. The result then follows by induction on the definition of s2 <:n2,n1
s1, using the previous part of this lemma. �

C ADDITIONAL RESULTS AND PROOFS FOR SECTION 7

We first establish a technical property, derived from the definition of <:m,n, that is satisfied by
≤:m,n.

Lemma C.1 (Characterization of ≤:m,n). Let n1,n2, and n3 be proof nodes in T, with n2 a

companion node and n3 � n2. If s2 ≤:n2,n1 s1, s ′2 <:+n2 s2, and s3 ≤:n3,n2 s ′2, then s3 ≤:n3,n1 s1.

Proof. Follows from the definitions of ≤:m,n and <:m,n and pseudo-transitivity (Lemma 6.19)
of <:m,n. �

We next use this property to show that ≤:m,n obeys a pseudo-transitivity law (Lemma 7.11). That
is, if s3 ≤:n3,n2 s2 s3 ≤:n3,n2 s2 and s2 ≤:n2,n1 s1, then s3 ≤:n3,n1 s1

Proof of Lemma 7.11. Follows from pseudo-transitivity of <:m,n (Lemma 6.19) and the preced-
ing lemma. �

D ADDITIONAL RESULTS AND PROOFS FOR SECTION 8

We first give a proof of Lemma 8.5, which states that if R ⊆ S×S is total and quotient well-founded,
then R is a quotient well-ordering.

Proof of Lemma 8.5. Let R ⊆ S × S be total and qwf, with (QR ,�) the quotient of R. We must
show that � = �− is a well-ordering, i.e., is well-founded and total, over QR . Well-foundedness of
� is immediate from the fact that R is qwf. We now must show that � is total, i.e., is irreflexive
and transitive and has the property that for any Q1,Q2 ∈ QR such that Q1 � Q2, either Q1 � Q2
or Q2 � Q1. Irreflexivity and transitivity are immediate from the fact that �=�− is the irreflexive
core of partial order �. Now suppose Q1,Q2 ∈ QR are such that Q1 � Q2; we must show that
either Q1 � Q2 or Q2 � Q1. From the definition of QR it follows that there are s1, s2 ∈ S such that
Q1 = [s1]R and Q2 = [s2]R . Moreover, since Q1 � Q2 it must be that s1 �R s2, and since R is total
we have that either s1 R s2 and s2 � Rs1, whence Q1 = [s1]R � [s2]R = Q2, or s2 R s1 and s1 � Rs2,
whence Q2 � Q1. As � is a well-ordering on QR , by definition R is a qwo. �

Next we give the proof of Lemma 8.7, which states that if R ⊆ S × S is a total quotient well-
ordering, then every non-empty subset X ⊂ S contains an R-pseudo-minimum element.

Proof of Lemma 8.7. Fix total qwo R ⊆ S × S , and let X ⊆ S be non-empty. We must exhibit an
R-pseudo-minimum element x ∈ X . To this end, consider the quotient (QR ,�) of R, and let � = �−
be the irreflexive core of �. Note that � is a well-ordering overQR . Now considerQX ⊆ QR defined
by QX = { [x]R | x ∈ S }. It follows that there is a Q ∈ QX that is a �-minimum for QX , and that
Q = [x]R for some x ∈ X . Since R is total it is transitive, meaning R∗ = R=. Then x R x ′ for all
x ′ ∈ [x]R such that x � x ′; it is also the case that x R x ′ for all x ′ such that [x]R � [x ′]R . These
facts imply that x R x ′ for all x ′ ∈ X . �

Finally, let f ,д be monotonic functions over the subset lattice induced by S , and σ1,σ2 ∈ {μ,ν }
with X = σ1 ( f [σ2]д). Also, let (X ,≺) be a σ1-compatible, total qwf support structure for f [σ2]д
and Y = σ2д(≺−1 (X ), ·) . We show there is a σ2-compatible, total qwf support structure (Y ,≺′) for
д(≺−1 (X ), ·) that is locally consistent with (X ,≺) (Lemma 8.9).
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Proof of Lemma 8.9. Fix monotonic f ,д ∈ 2S ×2S → 2S and σ1,σ2 ∈ {μ,ν }, letX = σ1 ( f [σ2]д),
and let ≺ ⊆ X × X be such that (X ,≺) is a σ1-compatible, total qwf support structure for f [σ2]д.
Also fix Y = σ2д(≺−1 (X ), ·) . We must construct a σ2-compatible, total qwf ≺′ ⊆ Y × Y such that
(Y ,≺′) is a support structure for д(≺−1 (X ), ·) that is locally consistent with (X ,≺).
Let (Q≺,�) be the quotient of (S,≺) as given in Definition 3.8, and let � = �− be the irreflexive
core of �. For notational convenience, if Z ⊆ S then we define

дZ = д(≺−1 (Z ), ·) .

Since ≺ is total and qwf it follows that � is a well-ordering on Q≺. For any Q ∈ Q≺ define

YQ = σ2 дQ ,

and let (YQ ,≺′Q ) be a σ2-maximal support structure for дQ . Since ≺′Q ⊆ YQ ×YQ is σ2-maximal, we

have that ≺′Q is a well-ordering if σ2 = μ, and UYQ
= YQ × YQ if σ2 = ν . In either case it is easy

to see that ≺′Q is total and qwf. Moreover, since Q ⊆ X it follows that ≺−1 (Q ) ⊆ ≺−1 (X ), and this

means that for all Z ⊆ S , дQ (Z ) ⊆ дX (Z ). Consequently (YQ ,≺′Q ) is also a σ2-compatible support

structure for дX , as for all y ∈ YQ , y ∈ дQ (≺′Q
−1 (y)) ⊆ дX (≺′Q

−1 (y)). We now define the following

using well-founded induction on � = P (≺)−.

Y ′�Q =
⋃

Q ′�Q

Y ′Q ′,

Y ′Q = YQ ∪ Y ′�Q ,

Y ′′Q = YQ \ Y ′�Q ,

≺′′Q =
�	


⋃

Q ′�Q

≺′′Q ′
��
 ∪
(
Y ′�Q × Y

′′
Q

)
∪
(
≺′Q �Y

′′
Q

)
.

An inductive argument establishes that for each Q , (Y ′Q ,≺
′′
Q ) is a σ2-compatible support structure

for дQ and that ≺′′Q is total and qwf.
Now consider Y ′ =

⋃
Q ∈Q≺ Y

′
Q and ≺

′′ =
⋃

Q ∈Q≺ ≺′′Q . It is straightforward to show that (Y
′,≺′′)

is a σ2-compatible, total, qwf support structure forдX since each (YQ ,≺′Q ) is. Also note thatY ′ ⊆ Y .

To finish the construction of (Y ,≺′), takeY ′′ = Y \Y ′, and let (Y ,≺′′′) be a maximal σ2-compatible
support structure for дX . Note that ≺′′′ is qwf, and well-founded if σ2 = μ and UY if σ2 = ν . Now
define the following:

≺′ = ≺′′ ∪ (Y ′ × Y ′′) ∪ (≺′′′ �Y ′′) .

From the reasoning above it follows that (Y ,≺′) is a σ2-compatible support structure for дX , and
that ≺′ is total and qwf.
To complete the proof wemust show that (Y ,≺′) is locally consistent with (X ,≺). To this end, fix

x ∈ X and define ≺′x = (≺′)�Yx . We must show that (Yx ,≺′x ) is a σ2-compatible support structure
for дx = д{x } . Recall that [x] ∈ Q≺ is the equivalence class containing x . We begin by noting that
since ≺ is total and qwf,

≺−1 (x ) = [x] ∪ �	


⋃

Q�[x ]

Q�� .
Also, σ2 (дx ) = σ2 (д[x ]) = Y[x ]. The definition of ≺′ further guarantees that ≺′x=≺′′Qx

. As we know

that (YQ ,≺′′Q ) is a σ2-compatible support structure for дQ for all Q ∈ Q≺, the desired result holds.
�

ACM Transactions on Computational Logic, Vol. 25, No. 1, Article 2. Publication date: November 2023.



Extensible Proof Systems for Infinite-State Systems 2:55

We next proved the detailed proof showing that if S ⊆ || Φ | |TV then there is successful TNF
tableau for S �T ,Vε Φ.

Proof of Lemma 8.13. Let T = (S,−→) be an LTS of sort Σ and V be a valuation. The proof
proceeds by structural induction on Φ; the induction hypothesis states for any subformula Φ′ of

Φ and S ′ such that S ′ ⊆ | | Φ′ | |TV , that S
′ �T ,Vε Φ′ has a successful TNF tableau. The argument

involves a case analysis on the form of Φ. Most cases are routine and left to the reader. We consider
here the case for 〈K〉.
So assume Φ = 〈K〉Φ′, and let f ∈ S → S be a function such that for every s ∈ S , s K−→ f (s ) and

f (s ) ∈ || Φ′ | |TV . Such an f must exist, as S ⊆ || 〈K〉Φ
′ | |TV and thus for every s ∈ S there is an s

′ ∈ S
such that s K−→ s ′ and s ′ ∈ | | Φ′ | |TV . Since f (S ) ⊆ || Φ′ | |TV , the induction hypothesis guarantees
the existence of a successful TNF tableau for f (S ) �T ,Vε Φ′. We now construct a successful TNF

tableau for S �T ,V
′

ε Φ as follows. Create a fresh tree node labeled by S �T ,Vε Φ, and let its only child

be the root node for the successful TNF tableau for f (S ) �T ,Vε Φ′. The rule application associated
with the new node is (〈K〉, f ). The new tableau is clearly successful and TNF. �

E ADDITIONAL RESULTS AND PROOFS FOR SECTION 10

We first establish completeness for timed mu-calculus formulas without fixpoints, extending the
result in Lemma 8.13.

Lemma E.1 (Timed Fixpoint-free Completeness). Let T ,V,Φ, and S be such that Φ is a

fixpoint-free timed mu-calculus formula and S ⊆ || Φ | |TV . Then there is a successful TNF timed tableau

for S �T ,Vε Φ.

Proof. Let T = (S,→) be a TTS of timed sort Σ, and V be a valuation. The proof proceeds
by structural induction on Φ; the induction hypothesis states that for any subformula Φ′ of Φ and

S ′, if S ′ ⊆ | | Φ′ | |TV then S
′ �T ,Vε Φ′ has a successful TNF timed tableau. The proof is completely

analogous to that of Lemma 8.13, and involves a case analysis on the form of Φ. We here only show
the cases for the new operators, ∃ and ∀.
Assume Φ = ∃Φ1Φ2; we first establish that there exists a function f ∈ S → R≥0 such that for
all s ∈ S , f (s ) ∈ del (s ), succ< (s, f (s )) ⊆ || Φ1 | |TV , and succ(s, f (s )) ∈ || Φ2 | |TV . Fix arbitrary s ∈ S .
Then s ∈ || ∃Φ1Φ2 | |TV , and the definition of | | ∃Φ1Φ2 | |TV guarantees the existence of δ ∈ del (s )

such that succ< (s,δ ) ⊆ || Φ1 | |TV and succ(s,δ ) ∈ || Φ2 | |TV . Let δ be such and set f (s ) = δ . This
immediately satisfies the required conditions. It follows from this definition of f that f< (S ) ⊆
|| Φ1 | |TV . Furthermore, as for every s ∈ S , succ(s, f (s )) ∈ || Φ2 | |TV , also f= (S ) ⊆ || Φ2 | |TV . Hence,
the induction hypothesis guarantees that successful TNF timed tableaux exist for f< (S ) �T ,Vε Φ1
and f= (S ) �T ,Vε Φ2. Without loss of generality, assume that these tableaux have disjoint sets of

proof nodes.We now construct a successful TNF timed tableau for S �T ,Vε ∃Φ1Φ2 as follows. Create

a fresh tree node labeled by S �T ,Vε ∃Φ1Φ2, having as its left child the root node of the successful

TNF timed tableau for f< (S ) �T ,Vε Φ1 and as its right child the root of the successful TNF timed

tableau for f= (S ) �T ,Vε Φ2. The rule application associated with the new node is (∃, f ). The new
tableau is clearly successful and TNF.
Now assume Φ = ∀Φ1Φ2; we first establish that there exists a function д ∈ S × R≥0 → R≥0
such that, for all s ∈ S , δ ∈ del (s ), д(s,δ ) ≤ δ , and such that if д(s,δ ) = δ , succ(s,д(s,δ )) ∈
|| Φ2 | |TV , and succ(s,д(s,δ )) ∈ || Φ1 | |TV , otherwise. Fix arbitrary s ∈ S . Since s ∈ || ∀Φ1Φ2 | |TV , the
definition of | | ∀Φ1Φ2 | |TV guarantees that, for all δ ∈ del (s ), either succ< (s,δ ) ∩ || Φ1 | |TV � ∅ or
succ(s,δ ) ∈ || Φ2 | |TV . So, if succ< (s,δ ) ∩ || Φ1 | |TV � ∅ there is some δ

′ < δ such that succ(s,δ ′) ∈
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| | Φ1 | |TV , and we chooseд(s,δ ) = δ ′. Otherwise, succ(s,δ ) ∈ || Φ2 | |TV andwe can chooseд(s,δ ) = δ .

Given such a д, it is easy to see that д< (S ) ⊆ || Φ1 | |TV and д= (S ) ⊆ || Φ2 | |TV ; hence the induction
hypothesis guarantees that successful TNF timed tableaux exist forд< (S ) �T ,Vε Φ1 andд= (S ) �T ,Vε

Φ2. Without loss of generality, assume that these tableaux have disjoint sets of proof nodes. We

now construct a successful TNF timed tableau for S �T ,Vε ∀Φ1Φ2 as follows. Create a fresh tree

node labeled by S �T ,Vε ∀Φ1Φ2, having as its left child the root node of the successful TNF timed

tableau for д< (S ) �T ,Vε Φ1 and as its right child the root of the successful TNF timed tableau for

д= (S ) �T ,Vε Φ2. The rule application associated with the new node is (∀,д). The new tableau is
clearly successful and TNF. �

We next establish the existence of successful TNF timed tableaux for valid sequents in the case
where formulas have the form σZ .Φ, where Φ does not contain fixpoint subformulas, and have
specific σ -compatible fixpoint orderings, analogous to Lemma 8.15. The proof, in particular, shows
in detail how to merge tableaux containing rules ∀ and ∃.
Lemma E.2 (Timed Single-fixpoint Completeness). Let T be a TTS, and let Φ, Z ,V , σ and S

be such that Φ is a fixpoint-free timed mu-calculus formula and S = | | σZ .Φ | |TV . Also let (S,≺) be

a σ -compatible, total, qwf support structure for | | Z .Φ | |TV . Then S �T ,Vε σZ .Φ has a successful TNF

timed tableau compliant with (S,≺).

Proof. Fix TTS T = (S,−→) of sort Σ, and let Φ,Z ,V,σ and S be such that Φ is a fixpoint-
free timed mu-calculus formula, and S = | | σZ .Φ | |TV . Also let (S,≺) be a σ -compatible, total, qwf

support structure for fΦ = | | Z .Φ | |TV .Wemust construct a successful TNF timed tableau for sequent
S �T ,Vε σZ .Φ that is compliant with (S,≺). The proof mirrors the one given for Lemma 8.15 and
consists of the following steps:

(1) For each s ∈ S we use Lemma E.1 to establish the existence of a successful TNF timed tableau
for sequent {s} �T ,Vs

ε Φ, whereVs = V[Z := ≺−1 (s )].

(2) We then construct a successful TNF timed tableau for sequent S �T ,VS
ε Φ, where VS =

V[Z := ≺−1 (S )], from the individual tableaux for the s ∈ S .
(3) We convert the tableau for S �T ,Vs

ε Φ into a successful TNF timed tableau for S �T ,Vε σZ .Φ
that is compliant with ≺.

The proofs of steps 1 and 3 are completely analogous to the one in the proof of Lemma 8.15, using
Lemma E.1 instead of Lemma 8.13. We here focus on Step 2 of the proof outline, and construct a

tableau for S �T ,VS
ε Φ.

Let Ts = (T ,Vs ,T, ρs , λs ) be the successful TNF timed tableau whose root is {s} �T ,Vs
ε Φ, with

T = (N, r,p, cs ) the common tree shared by all these structurally equivalent tableaux, with fm(n)
and rn(n) for n ∈ N the common formulas and rule names each tableau includes in n.
We now adapt the construction in the proof of Lemma 8.15 to build a successful TNF timed

tableau for S �T ,VS
ε Φ satisfying the following: if s, s ′ and n′ are such that fm(n′) = Z and s ′ <:n′,r s ,

then s ′ ≺ s . There are two cases to consider. The proof if S = ∅ is analogous to that in Lemma 8.15.
So, assume S � ∅. We will construct TS = (T ,VS ,T, ρS , λS ) that is structurally equivalent to each
Ts for s ∈ S . As was the case in the proof of Lemma 8.15 the idea is to appropriately “merge” the
individual tableaux Ts for the s ∈ S . The construction uses a co-inductive strategy to define ρS and
λS so that invariants I1–I3 in Lemma 8.15 hold for n ∈ N. Specifically, λS (r) is set to be sequent

S �T ,εVS
Φ; this ensures that invariants I2 and I3 hold of r. Then, for every internal node n for which

λS (n) has been defined and for which invariants I2 and I3 hold, ρS (n) and λS (n′) for each child
n′ of n are defined so that invariant I1 holds of n and invariants I2 and I3 hold of each n′. This
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processing of internal nodes is done using a case analysis on rn(n). Let Sn = st(λS (n)) be the set of
states in the sequent labeling n. We only consider the cases where rn(n) ∈ {∀,∃}; the other cases
are identical to those in Lemma 8.15.

rn(n) = ∃. In this case, cs (n) = n1n2 and fm(n) = ∃fm(n1 )fm(n2). We begin by constructing a
function fn ∈ Sn → R≥0 such that for all s ∈ Sn, fn (s ) ∈ del (s ), and also such that ( fn)< (Sn) ⊆⋃

t ∈S st(λt (n1)) and ( fn)= (Sn) ⊆ ⋃t ∈S st(λt (n2)). This function will then be used to define
ρS (n, λS (n1) and λS (n2). So fix s ∈ Sn; we construct fn (s ) based on the tableaux Tt whose
sequence for n contains s . To this end, define

Is = {t ∈ S | s ∈ st(λt (n))}.

Intuitively, Is ⊆ S contains all states t whose tableau Tt contains state s in n. Clearly Is is non-
empty and thus contains a pseudo-minimum element t (Lemma 8.7). Let fn,t ∈ st(λt (n)) →
R≥0 be such that ρt (n) = (∃, fn,t ). We know that for all s ∈ st(λt (n)), fn,t (s ) ∈ del (s ),
succ< (s, fn,t (s )) ⊆ st(λt (n1)), and {succ(s, fn,t (s )) | s ∈ st(λt (n))} ⊆ st(λt (n2)). We now

define fn (s ) = fn,t (s ) Finally, we define ρS (n) = (∃, fn), λS (n1) = ( fn)< (Sn) �T ,VS
ε fm(n1),

and λS (n2) = ( fn)= (Sn) �T ,VS
ε fm(n2). It can be seen that invariant I1 holds of n and that I2

and I3 hold of n1 and n2.
rn(n) = ∀. In this case, cs (n) = n1n2 and fm(n) = ∀fm(n1 )fm(n2). We begin by constructing a

function дn ∈ Sn × R≥0 → R≥0 such that (дn)< (Sn) ⊆ ⋃t ∈S st(λt (n1)) and (дn)= (Sn) ⊆⋃
t ∈S st(λt (n2)). This function will then be used to define ρS (n), λS (n1) and λS (n2) so that
the desired invariants hold. So fix s ∈ Sn and δ ∈ del (s ); we construct дn (s,δ ) based on the
tableaux Tt whose sequent for n contains s . To this end, define

Is = {t ∈ S | s ∈ st(λt (n))}.

Intuitively, Is ⊆ S contains all states t whose tableau Tt contains state s in n. Clearly Is is
non-empty and thus contains a pseudo-minimum element t with respect to ≺ (Lemma 8.7).
Let дn,t ∈ st(λt (n)) × S → S be such that ρt (n) = (∀,дn,t ). We know that for all
δ ∈ succ(s ), if дn,t (s,δ ) < δ then succ(s,дn,t (s,δ )) ∈ st(λt (n1)), and if дn,t (s,δ ) = δ then
succ(s,дn,t (s,δ )) ∈ st(λt (n2)). We take дn (s,δ ) = дn,t (s,δ ). Finally, we define ρ (n) = (∀,дn),

λS (n1) = (дn)< (Sn) �T ,VS
ε fm(n1) and λS (n2) = (дn)= (Sn) �T ,VS

ε fm(n2). It can be seen that
invariant I1 holds of n and that I2 and I3 hold of n1 and n2.

This construction ensures that Properties I1–I3 hold for all n.
To establish that TS is successful we must show that every leaf in TS is successful. The argument
is identical to the proof in Lemma 8.15, Step 2. �

As an immediate corollary, we have the following:

Corollary E.3. Fix T , and let Φ,Z ,V,σ and S be such that Φ is a timed fixpoint-free formula

and S = | | σZ .Φ | |TV . Then S �T ,Vε σZ .Φ has a successful tableau.

Proof. Follows from Lemma E.2 and the fact that every σ -maximal support structure (S,≺) for
| | Z .Φ | |TV is total and qwf. �
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