28,669 research outputs found

    Stability of stochastic impulsive differential equations: integrating the cyber and the physical of stochastic systems

    Full text link
    According to Newton's second law of motion, we humans describe a dynamical system with a differential equation, which is naturally discretized into a difference equation whenever a computer is used. The differential equation is the physical model in human brains and the difference equation the cyber model in computers for the dynamical system. The physical model refers to the dynamical system itself (particularly, a human-designed system) in the physical world and the cyber model symbolises it in the cyber counterpart. This paper formulates a hybrid model with impulsive differential equations for the dynamical system, which integrates its physical model in real world/human brains and its cyber counterpart in computers. The presented results establish a theoretic foundation for the scientific study of control and communication in the animal/human and the machine (Norbert Wiener) in the era of rise of the machines as well as a systems science for cyber-physical systems (CPS)

    A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods

    Full text link
    In this article we compare the mean-square stability properties of the Theta-Maruyama and Theta-Milstein method that are used to solve stochastic differential equations. For the linear stability analysis, we propose an extension of the standard geometric Brownian motion as a test equation and consider a scalar linear test equation with several multiplicative noise terms. This test equation allows to begin investigating the influence of multi-dimensional noise on the stability behaviour of the methods while the analysis is still tractable. Our findings include: (i) the stability condition for the Theta-Milstein method and thus, for some choices of Theta, the conditions on the step-size, are much more restrictive than those for the Theta-Maruyama method; (ii) the precise stability region of the Theta-Milstein method explicitly depends on the noise terms. Further, we investigate the effect of introducing partially implicitness in the diffusion approximation terms of Milstein-type methods, thus obtaining the possibility to control the stability properties of these methods with a further method parameter Sigma. Numerical examples illustrate the results and provide a comparison of the stability behaviour of the different methods.Comment: 19 pages, 10 figure

    Design of quasi-symplectic propagators for Langevin dynamics

    Full text link
    A vector field splitting approach is discussed for the systematic derivation of numerical propagators for deterministic dynamics. Based on the formalism, a class of numerical integrators for Langevin dynamics are presented for single and multiple timestep algorithms

    Postprocessed integrators for the high order integration of ergodic SDEs

    Full text link
    The concept of effective order is a popular methodology in the deterministic literature for the construction of efficient and accurate integrators for differential equations over long times. The idea is to enhance the accuracy of a numerical method by using an appropriate change of variables called the processor. We show that this technique can be extended to the stochastic context for the construction of new high order integrators for the sampling of the invariant measure of ergodic systems. The approach is illustrated with modifications of the stochastic θ\theta-method applied to Brownian dynamics, where postprocessors achieving order two are introduced. Numerical experiments, including stiff ergodic systems, illustrate the efficiency and versatility of the approach.Comment: 21 pages, to appear in SIAM J. Sci. Compu

    Stochastic analysis of a full system of two competing populations in a chemostat

    Get PDF
    This paper formulates two 3D stochastic differential equations (SDEs) of two microbial populations in a chemostat competing over a single substrate. The two models have two distinct noise sources. One is general noise whereas the other is dilution rate induced noise. Nonlinear Monod growth rates are assumed and the paper is mainly focused on the parameter values where coexistence is present deterministically. Nondimensionalising the equations around the point of intersection of the two growth rates leads to a large parameter which is the nondimensional substrate feed. This in turn is used to perform an asymptotic analysis leading to a reduced 2D system of equations describing the dynamics of the populations on and close to a line of steady states retrieved from the deterministic stability analysis. That reduced system allows the formulation of a spatially 2D Fokker-Planck equation which when solved numerically admits results similar to those from simulation of the SDEs. Contrary to previous suggestions, one particular population becomes dominant at large times. Finally, we brie y explore the case where death rates are added

    Mean-square stability analysis of approximations of stochastic differential equations in infinite dimensions

    Full text link
    The (asymptotic) behaviour of the second moment of solutions to stochastic differential equations is treated in mean-square stability analysis. This property is discussed for approximations of infinite-dimensional stochastic differential equations and necessary and sufficient conditions ensuring mean-square stability are given. They are applied to typical discretization schemes such as combinations of spectral Galerkin, finite element, Euler-Maruyama, Milstein, Crank-Nicolson, and forward and backward Euler methods. Furthermore, results on the relation to stability properties of corresponding analytical solutions are provided. Simulations of the stochastic heat equation illustrate the theory.Comment: 22 pages, 4 figures; deleted a section; shortened the presentation of results; corrected typo
    corecore