6 research outputs found

    Brain MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep Neural Network

    Get PDF
    Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain anatomy and functions. The mechanism of image processing has widespread usage in the area of medical science for improving the early detection and treatment phases. Deep neural networks (DNN), till date, have demonstrated wonderful performance in classification and segmentation task. Carrying this idea into consideration, in this paper, a technique for image compression using a deep wavelet autoencoder (DWA), which blends the basic feature reduction property of autoencoder along with the image decomposition property of wavelet transform is proposed. The combination of both has a tremendous effect on sinking the size of the feature set for enduring further classification task by using DNN. A brain image dataset was taken and the proposed DWA-DNN image classifier was considered. The performance criterion for the DWA-DNN classifier was compared with other existing classifiers such as autoencoder-DNN or DNN, and it was noted that the proposed method outshines the existing methods

    Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network

    Get PDF
    In every aspect of human life, sound plays an important role. From personal security to critical surveillance, sound is a key element to develop the automated systems for these fields. Few systems are already in the market, but their efficiency is a point of concern for their implementation in real-life scenarios. The learning capabilities of the deep learning architectures can be used to develop the sound classification systems to overcome efficiency issues of the traditional systems. Our aim, in this paper, is to use the deep learning networks for classifying the environmental sounds based on the generated spectrograms of these sounds. We used the spectrogram images of environmental sounds to train the convolutional neural network (CNN) and the tensor deep stacking network (TDSN). We used two datasets for our experiment: ESC-10 and ESC-50. Both systems were trained on these datasets, and the achieved accuracy was 77% and 49% in CNN and 56% in TDSN trained on the ESC-10. From this experiment, it is concluded that the proposed approach for sound classification using the spectrogram images of sounds can be efficiently used to develop the sound classification and recognition systems

    A Survey of Quantum Theory Inspired Approaches to Information Retrieval

    Get PDF
    Since 2004, researchers have been using the mathematical framework of Quantum Theory (QT) in Information Retrieval (IR). QT offers a generalized probability and logic framework. Such a framework has been shown capable of unifying the representation, ranking and user cognitive aspects of IR, and helpful in developing more dynamic, adaptive and context-aware IR systems. Although Quantum-inspired IR is still a growing area, a wide array of work in different aspects of IR has been done and produced promising results. This paper presents a survey of the research done in this area, aiming to show the landscape of the field and draw a road-map of future directions

    Semantic Representation and Inference for NLP

    Full text link
    Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).Comment: PhD thesis, the University of Copenhage

    Towards a quantum-inspired framework for binary classification

    No full text
    corecore