77,988 research outputs found

    Design thinking support: information systems versus reasoning

    Get PDF
    Numerous attempts have been made to conceive and implement appropriate information systems to support architectural designers in their creative design thinking processes. These information systems aim at providing support in very diverse ways: enabling designers to make diverse kinds of visual representations of a design, enabling them to make complex calculations and simulations which take into account numerous relevant parameters in the design context, providing them with loads of information and knowledge from all over the world, and so forth. Notwithstanding the continued efforts to develop these information systems, they still fail to provide essential support in the core creative activities of architectural designers. In order to understand why an appropriately effective support from information systems is so hard to realize, we started to look into the nature of design thinking and on how reasoning processes are at play in this design thinking. This investigation suggests that creative designing rests on a cyclic combination of abductive, deductive and inductive reasoning processes. Because traditional information systems typically target only one of these reasoning processes at a time, this could explain the limited applicability and usefulness of these systems. As research in information technology is increasingly targeting the combination of these reasoning modes, improvements may be within reach for design thinking support by information systems

    Scientific Knowledge Object Patterns

    Get PDF
    Web technology is revolutionizing the way diverse scientific knowledge is produced and disseminated. In the past few years, a handful of discourse representation models have been proposed for the externalization of the rhetoric and argumentation captured within scientific publications. However, there hasn’t been a unified interoperable pattern that is commonly used in practice by publishers and individual users yet. In this paper, we introduce the Scientific Knowledge Object Patterns (SKO Patterns) towards a general scientific discourse representation model, especially for managing knowledge in emerging social web and semantic web. © ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is going to be published in "Proceedings of 15th European Conference on Pattern Languages of Programs", (2011) http://portal.acm.org/event.cfm?id=RE197&CFID=8795862&CFTOKEN=1476113

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure
    • …
    corecore