4,669 research outputs found

    Soliton pair creation in classical wave scattering

    Full text link
    We study classical production of soliton-antisoliton pairs from colliding wave packets in (1+1)-dimensional scalar field model. Wave packets represent multiparticle states in quantum theory; we characterize them by energy E and particle number N. Sampling stochastically over the forms of wave packets, we find the entire region in (E,N) plane which corresponds to classical creation of soliton pairs. Particle number is parametrically large within this region meaning that the probability of soliton-antisoliton pair production in few-particle collisions is exponentially suppressed.Comment: 16 pages, 8 figures, journal version; misprint correcte

    Ultra-Reliable Low-Latency Vehicular Networks: Taming the Age of Information Tail

    Full text link
    While the notion of age of information (AoI) has recently emerged as an important concept for analyzing ultra-reliable low-latency communications (URLLC), the majority of the existing works have focused on the average AoI measure. However, an average AoI based design falls short in properly characterizing the performance of URLLC systems as it cannot account for extreme events that occur with very low probabilities. In contrast, in this paper, the main objective is to go beyond the traditional notion of average AoI by characterizing and optimizing a URLLC system while capturing the AoI tail distribution. In particular, the problem of vehicles' power minimization while ensuring stringent latency and reliability constraints in terms of probabilistic AoI is studied. To this end, a novel and efficient mapping between both AoI and queue length distributions is proposed. Subsequently, extreme value theory (EVT) and Lyapunov optimization techniques are adopted to formulate and solve the problem. Simulation results shows a nearly two-fold improvement in terms of shortening the tail of the AoI distribution compared to a baseline whose design is based on the maximum queue length among vehicles, when the number of vehicular user equipment (VUE) pairs is 80. The results also show that this performance gain increases significantly as the number of VUE pairs increases.Comment: Accepted in IEEE GLOBECOM 2018 with 7 pages, 6 figure

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated
    • …
    corecore