7 research outputs found

    Towards zero-shot cross-lingual named entity disambiguation

    Get PDF
    [EN]In cross-Lingual Named Entity Disambiguation (XNED) the task is to link Named Entity mentions in text in some native language to English entities in a knowledge graph. XNED systems usually require training data for each native language, limiting their application for low resource languages with small amounts of training data. Prior work have proposed so-called zero-shot transfer systems which are only trained in English training data, but required native prior probabilities of entities with respect to mentions, which had to be estimated from native training examples, limiting their practical interest. In this work we present a zero-shot XNED architecture where, instead of a single disambiguation model, we have a model for each possible mention string, thus eliminating the need for native prior probabilities. Our system improves over prior work in XNED datasets in Spanish and Chinese by 32 and 27 points, and matches the systems which do require native prior information. We experiment with different multilingual transfer strategies, showing that better results are obtained with a purpose-built multilingual pre-training method compared to state-of-the-art generic multilingual models such as XLM-R. We also discovered, surprisingly, that English is not necessarily the most effective zero-shot training language for XNED into English. For instance, Spanish is more effective when training a zero-shot XNED system that dis-ambiguates Basque mentions with respect to an English knowledge graph.This work has been partially funded by the Basque Government (IXA excellence research group (IT1343-19) and DeepText project), Project BigKnowledge (Ayudas Fundacion BBVA a equipos de investigacion cientifica 2018) and via the IARPA BETTER Program contract 2019-19051600006 (ODNI, IARPA activity). Ander Barrena enjoys a post-doctoral grant ESPDOC18/101 from the UPV/EHU and also acknowledges the support of the NVIDIA Corporation with the donation of a Titan V GPU used for this research. The author thankfully acknowledges the computer resources at CTE-Power9 + V100 and technical support provided by Barcelona Supercomputing Center (RES-IM-2020-1-0020)

    Multilingual Autoregressive Entity Linking

    Get PDF
    We present mGENRE, a sequence-to- sequence system for the Multilingual Entity Linking (MEL) problem—the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where we establish new state-of-the-art results. Source code available at https://github.com/facebookresearch/GENRE

    Evaluating automated and hybrid neural disambiguation for African historical named entities

    Get PDF
    Documents detailing South African history contain ambiguous names. Ambiguous names may be due to people having the same name or the same person being referred to by multiple different names. Thus when searching for or attempting to extract information about a particular person, the name used may affect the results. This problem may be alleviated by using a Named Entity Disambiguation (NED) system to disambiguate names by linking them to a knowledge base. In recent years, transformer-based language models have led to improvements in NED systems. Furthermore, multilingual language models have shown the ability to learn concepts across languages, reducing the amount of training data required in low-resource languages. Thus a multilingual language model-based NED system was developed to disambiguate people's names within a historical South African context using documents written in English and isiZulu from the 500 Year Archive (FHYA). The multilingual language model-based system substantially improved on a probability-based baseline and achieved a micro F1-score of 0.726. At the same time, the entity linking component was able to link 81.9% of the mentions to the correct entity. However, the system's performance on documents written in isiZulu was significantly lower than on the documents written in English. Thus the system was augmented with handcrafted rules to improve its performance. The addition of handcrafted rules resulted in a small but significant improvement in performance when compared to the unaugmented NED system
    corecore