372 research outputs found

    Towards Whole Placenta Segmentation At Late Gestation Using Multi-View Ultrasound Images

    Get PDF
    We propose a method to extract the human placenta at late gestation using multi-view 3D US images. This is the first step towards automatic quantification of placental volume and morphology from US images along the whole pregnancy beyond early stages (where the entire placenta can be captured with a single 3D US image). Our method uses 3D US images from different views acquired with a multi-probe system. A whole placenta segmentation is obtained from these images by using a novel technique based on 3D convolutional neural networks. We demonstrate the performance of our method on 3D US images of the placenta in the last trimester. We achieve a high Dice overlap of up to 0.8 with respect to manual annotations, and the derived placental volumes are comparable to corresponding volumes extracted from MR.Wellcome Trust IEH Award; EPSRC Centre for Medical Engineering; National Institute for Health Research (NIHR); King’s College London; NHS Foundation Trus

    FUSQA: Fetal Ultrasound Segmentation Quality Assessment

    Full text link
    Deep learning models have been effective for various fetal ultrasound segmentation tasks. However, generalization to new unseen data has raised questions about their effectiveness for clinical adoption. Normally, a transition to new unseen data requires time-consuming and costly quality assurance processes to validate the segmentation performance post-transition. Segmentation quality assessment efforts have focused on natural images, where the problem has been typically formulated as a dice score regression task. In this paper, we propose a simplified Fetal Ultrasound Segmentation Quality Assessment (FUSQA) model to tackle the segmentation quality assessment when no masks exist to compare with. We formulate the segmentation quality assessment process as an automated classification task to distinguish between good and poor-quality segmentation masks for more accurate gestational age estimation. We validate the performance of our proposed approach on two datasets we collect from two hospitals using different ultrasound machines. We compare different architectures, with our best-performing architecture achieving over 90% classification accuracy on distinguishing between good and poor-quality segmentation masks from an unseen dataset. Additionally, there was only a 1.45-day difference between the gestational age reported by doctors and estimated based on CRL measurements using well-segmented masks. On the other hand, this difference increased and reached up to 7.73 days when we calculated CRL from the poorly segmented masks. As a result, AI-based approaches can potentially aid fetal ultrasound segmentation quality assessment and might detect poor segmentation in real-time screening in the future.Comment: 13 pages, 3 figures, 3 table

    Application of Advanced MRI to Fetal Medicine and Surgery

    Get PDF
    Robust imaging is essential for comprehensive preoperative evaluation, prognostication, and surgical planning in the field of fetal medicine and surgery. This is a challenging task given the small fetal size and increased fetal and maternal motion which affect MRI spatial resolution. This thesis explores the clinical applicability of post-acquisition processing using MRI advances such as super-resolution reconstruction (SRR) to generate optimal 3D isotropic volumes of anatomical structures by mitigating unpredictable fetal and maternal motion artefact. It paves the way for automated robust and accurate rapid segmentation of the fetal brain. This enables a hierarchical analysis of volume, followed by a local surface-based shape analysis (joint spectral matching) using mathematical markers (curvedness, shape index) that infer gyrification. This allows for more precise, quantitative measurements, and calculation of longitudinal correspondences of cortical brain development. I explore the potential of these MRI advances in three clinical settings: fetal brain development in the context of fetal surgery for spina bifida, airway assessment in fetal tracheolaryngeal obstruction, and the placental-myometrial-bladder interface in placenta accreta spectrum (PAS). For the fetal brain, MRI advances demonstrated an understanding of the impact of intervention on cortical development which may improve fetal candidate selection, neurocognitive prognostication, and parental counselling. This is of critical importance given that spina bifida fetal surgery is now a clinical reality and is routinely being performed globally. For the fetal trachea, SRR can provide improved anatomical information to better select those pregnancies where an EXIT procedure is required to enable the fetal airway to be secured in a timely manner. This would improve maternal and fetal morbidity outcomes associated with haemorrhage and hypoxic brain injury. Similarly, in PAS, SRR may assist surgical planning by providing enhanced anatomical assessment and prediction for adverse peri-operative maternal outcome such as bladder injury, catastrophic obstetric haemorrhage and maternal death

    Placental function estimated by T2*-weighted magnetic resonance imaging

    Get PDF

    PIPPI2021: An Approach to Automated Diagnosis and Texture Analysis of the Fetal Liver & Placenta in Fetal Growth Restriction

    Full text link
    Fetal growth restriction (FGR) is a prevalent pregnancy condition characterised by failure of the fetus to reach its genetically predetermined growth potential. We explore the application of model fitting techniques, linear regression machine learning models, deep learning regression, and Haralick textured features from multi-contrast MRI for multi-fetal organ analysis of FGR. We employed T2 relaxometry and diffusion-weighted MRI datasets (using a combined T2-diffusion scan) for 12 normally grown and 12 FGR gestational age (GA) matched pregnancies. We applied the Intravoxel Incoherent Motion Model and novel multi-compartment models for MRI fetal analysis, which exhibit potential to provide a multi-organ FGR assessment, overcoming the limitations of empirical indicators - such as abnormal artery Doppler findings - to evaluate placental dysfunction. The placenta and fetal liver presented key differentiators between FGR and normal controls (decreased perfusion, abnormal fetal blood motion and reduced fetal blood oxygenation. This may be associated with the preferential shunting of the fetal blood towards the fetal brain. These features were further explored to determine their role in assessing FGR severity, by employing simple machine learning models to predict FGR diagnosis (100\% accuracy in test data, n=5), GA at delivery, time from MRI scan to delivery, and baby weight. Moreover, we explored the use of deep learning to regress the latter three variables. Image texture analysis of the fetal organs demonstrated prominent textural variations in the placental perfusion fractions maps between the groups (p<<0.0009), and spatial differences in the incoherent fetal capillary blood motion in the liver (p<<0.009). This research serves as a proof-of-concept, investigating the effect of FGR on fetal organs

    Dynamics of T2* and deformation in the placenta and myometrium during pre-labour contractions

    Get PDF
    Pre-labour uterine contractions, occurring throughout pregnancy, are an important phenomenon involving the placenta in addition to the myometrium. They alter the uterine environment and thus potentially the blood supply to the fetus and may thus provide crucial insights into the processes of labour. Assessment in-vivo is however restricted due to their unpredictability and the inaccessible nature of the utero-placental compartment. While clinical cardiotocography (CTG) only allows global, pressure-based assessment, functional magnetic resonance imaging (MRI) provides an opportunity to study contractile activity and its effects on the placenta and the fetus in-vivo. This study aims to provide both descriptive and quantitative structural and functional MR assessments of pre-labour contractions in the human uterus. A total of 226 MRI scans (18–41 weeks gestation) from ongoing research studies were analysed, focusing on free-breathing dynamic quantitative whole uterus dynamic T2* maps. These provide an indirect measure of tissue properties such as oxygenation. 22 contractile events were noted visually and both descriptive and quantitative analysis of the myometrial and placental changes including volumetric and T2* variations were undertaken. Processing and analysis was successfully performed, qualitative analysis shows distinct and highly dynamic contraction related characteristics including; alterations in the thickness of the low T2* in the placental bed and other myometrial areas, high intensity vessel-like structures in the myometrium, low-intensity vessel structures within the placental parenchyma and close to the chorionic plate. Quantitative evaluation shows a significant negative correlation between T2* in both contractile and not-contractile regions with gestational age (p 0.5). The quantitative and qualitative description of uterine pre-labour contractions including dynamic changes and key characteristics aims to contribute to the sparsely available in-vivo information and to provide an in-vivo tool to study this important phenomenon. Further work is required to analyse the origins of these subclinical contractions, their effects in high-risk pregnancies and their ability to determine the likelihood of a successful labour. Assessing T2* distribution as a marker for placental oxygenation could thus potentially complement clinically used cardiotocography measurements in the future

    Mri Assessment Of Maternal Uteroplacental Circulation In Pregnancy

    Get PDF
    Hypertensive pregnancy disorders (HPD) such as preeclampsia are highly associated with maternal vascular malperfusion of the placenta, an organ that exchanges nutrients and oxygen between the maternal circulation and the growing fetus. Adverse pregnancy outcomes are difficult to predict because there is insufficient understanding of how poor maternal arterial remodeling leads to disease. There is also a lack of reliable tools to evaluate these changes in early gestation. The hypothesis of this dissertation was that magnetic resonance imaging (MRI) could noninvasively evaluate uteroplacental function in vivo through a combination of arterial spin labeling (ASL), 4D flow, and time-of-flight (TOF) techniques which were already effective in the evalution of other cardiovascular diseases. These flow and perfusion imaging studies were conducted on human pregnant volunteers in their second and third trimesters at 1.5T. Many of them were also examined by conventional Doppler ultrasound (US) and followed through delivery. Flow-sensitive Alternating Inversion Recovery (FAIR) ASL MRI with background suppression was found to be feasible in detecting placental perfusion signal despite the presence of motion artifacts. An important consideration when studying placental ASL was the slow movement of maternal arterial blood in a large cavity called the intervillous space. This was a unique feature of placental anatomy which distinguished it from other organs containing capillaries. It became apparent that traditional models to estimate perfusion from MRI were no longer applicable. In this work, a statistical approach was first developed to filter out motion artifacts, followed by a coordinate transformation to better represent the lobular distribution of blood flow in the intervillous space of the placenta. The uterine arteries (UtAs) are the main maternal blood supply of the placenta and have also long been suspected to be involved in HPD, though US-based measurements have not yet been found to be highly predictive for widespread clinical use. In this work, 4D flow MRI enabled visualization of the tortuous UtAs while measuring volumetric flow rate. Its performance in predicting incidence of preeclampsia and small-for-gestational age births was comparable to Doppler US. When considering the innovative potential of 4D flow MRI to capture complex flow dynamics, this validation demonstrated the value of continuing technical development for improving HPD risk assessment. Furthermore, centerline extraction of the maternal pelvic arteries in TOF MRI, from the descending aorta to the UtAs and external iliac arteries, provided quantitative metrics to characterize the geometry including path length and curvature. Pulse wave velocity (PWV) was estimated using path length by TOF MRI and velocimetry by 2D phase contrast and 4D flow MRI with results showing sensitivity to differences between UtAs and external iliac arteries. These approaches provided physiological metrics to explore and characterize the remodeling process of the uteroplacental arteries. This dissertation demonstrates the feasibility of measuring structure and hemodynamics of the maternal vascular blood supply using non-contrast MRI that can lead to the more reliable biomarkers of adverse pregnancy outcomes needed to diagnose and treat HPD
    • …
    corecore