21,305 research outputs found

    Linguistic unit discovery from multi-modal inputs in unwritten languages: Summary of the "Speaking Rosetta" JSALT 2017 Workshop

    Get PDF
    We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding the discovery of linguistic units (subwords and words) in a language without orthography. We study the replacement of orthographic transcriptions by images and/or translated text in a well-resourced language to help unsupervised discovery from raw speech.Comment: Accepted to ICASSP 201

    Word Discovery in Visually Grounded, Self-Supervised Speech Models

    Full text link
    We present a method for visually-grounded spoken term discovery. After training either a HuBERT or wav2vec2.0 model to associate spoken captions with natural images, we show that powerful word segmentation and clustering capability emerges within the model's self-attention heads. Our experiments reveal that this ability is not present to nearly the same extent in the base HuBERT and wav2vec2.0 models, suggesting that the visual grounding task is a crucial component of the word discovery capability we observe. We also evaluate our method on the Buckeye word segmentation and ZeroSpeech spoken term discovery tasks, where we outperform all currently published methods on several metrics.Comment: submitted to Interspeech 202

    Keyword localisation in untranscribed speech using visually grounded speech models

    Full text link
    Keyword localisation is the task of finding where in a speech utterance a given query keyword occurs. We investigate to what extent keyword localisation is possible using a visually grounded speech (VGS) model. VGS models are trained on unlabelled images paired with spoken captions. These models are therefore self-supervised -- trained without any explicit textual label or location information. To obtain training targets, we first tag training images with soft text labels using a pretrained visual classifier with a fixed vocabulary. This enables a VGS model to predict the presence of a written keyword in an utterance, but not its location. We consider four ways to equip VGS models with localisations capabilities. Two of these -- a saliency approach and input masking -- can be applied to an arbitrary prediction model after training, while the other two -- attention and a score aggregation approach -- are incorporated directly into the structure of the model. Masked-based localisation gives some of the best reported localisation scores from a VGS model, with an accuracy of 57% when the system knows that a keyword occurs in an utterance and need to predict its location. In a setting where localisation is performed after detection, an F1F_1 of 25% is achieved, and in a setting where a keyword spotting ranking pass is first performed, we get a localisation P@10 of 32%. While these scores are modest compared to the idealised setting with unordered bag-of-word-supervision (from transcriptions), these models do not receive any textual or location supervision. Further analyses show that these models are limited by the first detection or ranking pass. Moreover, individual keyword localisation performance is correlated with the tagging performance from the visual classifier. We also show qualitatively how and where semantic mistakes occur, e.g. that the model locates surfer when queried with ocean.Comment: 10 figures, 5 table

    Modelling multi-modal language learning: From sentences to words

    Get PDF
    corecore