83 research outputs found

    Improving Distributed Representations of Tweets - Present and Future

    Get PDF
    Unsupervised representation learning for tweets is an important research field which helps in solving several business applications such as sentiment analysis, hashtag prediction, paraphrase detection and microblog ranking. A good tweet representation learning model must handle the idiosyncratic nature of tweets which poses several challenges such as short length, informal words, unusual grammar and misspellings. However, there is a lack of prior work which surveys the representation learning models with a focus on tweets. In this work, we organize the models based on its objective function which aids the understanding of the literature. We also provide interesting future directions, which we believe are fruitful in advancing this field by building high-quality tweet representation learning models.Comment: To be presented in Student Research Workshop (SRW) at ACL 201

    Improving Distributed Representations of Tweets - Present and Future

    Full text link
    Unsupervised representation learning for tweets is an important research field which helps in solving several business applications such as sentiment analysis, hashtag prediction, paraphrase detection and microblog ranking. A good tweet representation learning model must handle the idiosyncratic nature of tweets which poses several challenges such as short length, informal words, unusual grammar and misspellings. However, there is a lack of prior work which surveys the representation learning models with a focus on tweets. In this work, we organize the models based on its objective function which aids the understanding of the literature. We also provide interesting future directions, which we believe are fruitful in advancing this field by building high-quality tweet representation learning models.Comment: To be presented in Student Research Workshop (SRW) at ACL 201

    Insights into Analogy Completion from the Biomedical Domain

    Get PDF
    Analogy completion has been a popular task in recent years for evaluating the semantic properties of word embeddings, but the standard methodology makes a number of assumptions about analogies that do not always hold, either in recent benchmark datasets or when expanding into other domains. Through an analysis of analogies in the biomedical domain, we identify three assumptions: that of a Single Answer for any given analogy, that the pairs involved describe the Same Relationship, and that each pair is Informative with respect to the other. We propose modifying the standard methodology to relax these assumptions by allowing for multiple correct answers, reporting MAP and MRR in addition to accuracy, and using multiple example pairs. We further present BMASS, a novel dataset for evaluating linguistic regularities in biomedical embeddings, and demonstrate that the relationships described in the dataset pose significant semantic challenges to current word embedding methods.Comment: Accepted to BioNLP 2017. (10 pages
    • …
    corecore