276,042 research outputs found

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    PRESENCE: A human-inspired architecture for speech-based human-machine interaction

    No full text
    Recent years have seen steady improvements in the quality and performance of speech-based human-machine interaction driven by a significant convergence in the methods and techniques employed. However, the quantity of training data required to improve state-of-the-art systems seems to be growing exponentially and performance appears to be asymptotic to a level that may be inadequate for many real-world applications. This suggests that there may be a fundamental flaw in the underlying architecture of contemporary systems, as well as a failure to capitalize on the combinatorial properties of human spoken language. This paper addresses these issues and presents a novel architecture for speech-based human-machine interaction inspired by recent findings in the neurobiology of living systems. Called PRESENCE-"PREdictive SENsorimotor Control and Emulation" - this new architecture blurs the distinction between the core components of a traditional spoken language dialogue system and instead focuses on a recursive hierarchical feedback control structure. Cooperative and communicative behavior emerges as a by-product of an architecture that is founded on a model of interaction in which the system has in mind the needs and intentions of a user and a user has in mind the needs and intentions of the system

    Spoken Language Intent Detection using Confusion2Vec

    Full text link
    Decoding speaker's intent is a crucial part of spoken language understanding (SLU). The presence of noise or errors in the text transcriptions, in real life scenarios make the task more challenging. In this paper, we address the spoken language intent detection under noisy conditions imposed by automatic speech recognition (ASR) systems. We propose to employ confusion2vec word feature representation to compensate for the errors made by ASR and to increase the robustness of the SLU system. The confusion2vec, motivated from human speech production and perception, models acoustic relationships between words in addition to the semantic and syntactic relations of words in human language. We hypothesize that ASR often makes errors relating to acoustically similar words, and the confusion2vec with inherent model of acoustic relationships between words is able to compensate for the errors. We demonstrate through experiments on the ATIS benchmark dataset, the robustness of the proposed model to achieve state-of-the-art results under noisy ASR conditions. Our system reduces classification error rate (CER) by 20.84% and improves robustness by 37.48% (lower CER degradation) relative to the previous state-of-the-art going from clean to noisy transcripts. Improvements are also demonstrated when training the intent detection models on noisy transcripts
    • …
    corecore