280 research outputs found

    MoSculp: Interactive Visualization of Shape and Time

    Full text link
    We present a system that allows users to visualize complex human motion via 3D motion sculptures---a representation that conveys the 3D structure swept by a human body as it moves through space. Given an input video, our system computes the motion sculptures and provides a user interface for rendering it in different styles, including the options to insert the sculpture back into the original video, render it in a synthetic scene or physically print it. To provide this end-to-end workflow, we introduce an algorithm that estimates that human's 3D geometry over time from a set of 2D images and develop a 3D-aware image-based rendering approach that embeds the sculpture back into the scene. By automating the process, our system takes motion sculpture creation out of the realm of professional artists, and makes it applicable to a wide range of existing video material. By providing viewers with 3D information, motion sculptures reveal space-time motion information that is difficult to perceive with the naked eye, and allow viewers to interpret how different parts of the object interact over time. We validate the effectiveness of this approach with user studies, finding that our motion sculpture visualizations are significantly more informative about motion than existing stroboscopic and space-time visualization methods.Comment: UIST 2018. Project page: http://mosculp.csail.mit.edu

    Motion-Aware Gradient Domain Video Composition

    Full text link

    Layered Neural Rendering for Retiming People in Video

    Full text link
    We present a method for retiming people in an ordinary, natural video---manipulating and editing the time in which different motions of individuals in the video occur. We can temporally align different motions, change the speed of certain actions (speeding up/slowing down, or entirely "freezing" people), or "erase" selected people from the video altogether. We achieve these effects computationally via a dedicated learning-based layered video representation, where each frame in the video is decomposed into separate RGBA layers, representing the appearance of different people in the video. A key property of our model is that it not only disentangles the direct motions of each person in the input video, but also correlates each person automatically with the scene changes they generate---e.g., shadows, reflections, and motion of loose clothing. The layers can be individually retimed and recombined into a new video, allowing us to achieve realistic, high-quality renderings of retiming effects for real-world videos depicting complex actions and involving multiple individuals, including dancing, trampoline jumping, or group running.Comment: To appear in SIGGRAPH Asia 2020. Project webpage: https://retiming.github.io

    FactorMatte: Redefining Video Matting for Re-Composition Tasks

    Full text link
    We propose "factor matting", an alternative formulation of the video matting problem in terms of counterfactual video synthesis that is better suited for re-composition tasks. The goal of factor matting is to separate the contents of video into independent components, each visualizing a counterfactual version of the scene where contents of other components have been removed. We show that factor matting maps well to a more general Bayesian framing of the matting problem that accounts for complex conditional interactions between layers. Based on this observation, we present a method for solving the factor matting problem that produces useful decompositions even for video with complex cross-layer interactions like splashes, shadows, and reflections. Our method is trained per-video and requires neither pre-training on external large datasets, nor knowledge about the 3D structure of the scene. We conduct extensive experiments, and show that our method not only can disentangle scenes with complex interactions, but also outperforms top methods on existing tasks such as classical video matting and background subtraction. In addition, we demonstrate the benefits of our approach on a range of downstream tasks. Please refer to our project webpage for more details: https://factormatte.github.ioComment: Project webpage: https://factormatte.github.i

    Temporally Coherent General Dynamic Scene Reconstruction

    Get PDF
    Existing techniques for dynamic scene reconstruction from multiple wide-baseline cameras primarily focus on reconstruction in controlled environments, with fixed calibrated cameras and strong prior constraints. This paper introduces a general approach to obtain a 4D representation of complex dynamic scenes from multi-view wide-baseline static or moving cameras without prior knowledge of the scene structure, appearance, or illumination. Contributions of the work are: An automatic method for initial coarse reconstruction to initialize joint estimation; Sparse-to-dense temporal correspondence integrated with joint multi-view segmentation and reconstruction to introduce temporal coherence; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes by introducing shape constraint. Comparison with state-of-the-art approaches on a variety of complex indoor and outdoor scenes, demonstrates improved accuracy in both multi-view segmentation and dense reconstruction. This paper demonstrates unsupervised reconstruction of complete temporally coherent 4D scene models with improved non-rigid object segmentation and shape reconstruction and its application to free-viewpoint rendering and virtual reality.Comment: Submitted to IJCV 2019. arXiv admin note: substantial text overlap with arXiv:1603.0338

    POPRAWA METOD KOMPENSACJI RUCHU PORUSZAJĄCYCH SIĘ OBIEKTÓW DYNAMICZNYCH W STREAMIE WIDEO SYSTEMU WIDEOKONFERENCYJNEGO

    Get PDF
    Videoconferencing gives us the opportunity to work and communicate in real time, as well as to use collective applications, interactive information exchange. Videoconferencing systems are one of the basic components of the organization of manegment, ensuring, the timeliness and necessary quality management of the implementation of objective control over the solution of the tasks. The quality of the image and the time of transmission of video information is unsatisfactory for the quality control of the troops. Considered ways to increase the efficiency of management and operational activities, due to methods of compensation of motion, using technology to reduce the volume of video data for quality improvement.Wideokonferencje dają możliwość pracy i komunikowania się w czasie rzeczywistym, a także korzystania ze zbiorowych aplikacji, interaktywnej wymiany informacji. Systemy wideokonferencyjne są jednym z podstawowych elementów organizacji zarządzania, zapewniając terminowość i niezbędne zarządzanie jakością w zakresie realizacji kontroli nad rozwiązaniem zadań. Jakość obrazu i czas transmisji informacji wideo jest niezadowalający dla kontroli jakości wojsk. Rozważono sposoby zwiększania efektywności zarządzania i działań operacyjnych, ze względu na metody kompensacji ruchu, z wykorzystaniem technologii zmniejszającej ilość danych wideo w celu poprawy jakości
    corecore