26 research outputs found

    WSN Location Privacy Scheme Enhancement through Epidemical Information Dissemination

    Get PDF
    Wireless Sensor Networks (WSNs) are commonly used for animal tracking. Over the years, a significant number of studies have been presented for monitoring moving targets through WSN. At the same time, the location / position information of each target should be available only to authorized entities, e.g., Animal Protection Centers, thus, the position should be kept private. The iHIDE is a location privacy mechanism that uses a non-geographical based routing scheme for packet delivery over WSN. In this paper, we elaborate on that scheme by introducing a routing plan construction algorithm. Furthermore, we enhance iHIDE by adopting the use of epidemical data dissemination as an enforcing privacy technique. Finally, we evaluate through simulations the scheme against other commonly used location privacy overlays in terms of network overhead and safety period

    Seculation Routing With Fortification Wireless Networks

    Get PDF
    Wireless sensor networks having so many problems a number of solutios enough? security issues, discusses some existing solutions, and suggests possible research directions like key establishment secrecy,authentication,privacy,denial-of-service attacks ,secure routing  and node capture attacks. Sensor devices are limited in their energy, computation, and communication capabilities Sensor nodes are often deployed in open areas, thus allowing physical attack Sensor networks closely interact with their physical environments and with people, posing new security problems. So In this paper address all the problems of wireless senor networks .In this paper we control back bone flooding attacks and give the location privacy These techniques provide trade-offs between privacy, communication cost, and latency.Through analysis and simulation, we demonstrate that the proposed techniques are efficient and effective for source and sink location privacy in sensor networks

    A Security Measure That Quantify The Anonymity Of Different Systems

    Get PDF
    The basis ambiguity difficulty in wireless sensor networks is the trouble of studying methods that provide time and position privacy for events reported by sensor nodes. Time and location privacy will be used interchangeably with source anonymity throughout the paper. The source anonymity problem has been drawing growing research concentration recently the source anonymity problem has been addressed under two different types of adversary’s namely local and global adversaries. A local adversary is definite to be an adversary having limited mobility and inequitable view of the network traffic. Routing based methods have been shown to be efficient in hiding the locations of reported events against local adversaries. A global adversary is defined to be an adversary with capacity to check the traffic of the entire network e.g. coordinating adversaries spatially distributed over the network. Against global adversaries routing based techniques are known to be unproductive in cover up location information in event-triggered transmission

    Source location anonymity for sensor networks,”

    Get PDF
    Abstract-Motivated by applications like sensor, peer to peer networks there has been growing interest in monitoring large scale distributed systems. In these applications, source location anonymity is an attractive and critical security property. Most of prior works assumed a weak adversary model where the adversary sees only local network traffic, but here we consider source anonymity against a global eavesdropper. Attaining location unobservability under global attacker is very difficult and expensive to achieve, because sensor networks are very limited in resources. In this work we propose a distributed algorithm to mix real event traffic with carefully chosen dummy traffic to hide the real event traffic pattern. We assume that we have fixed amount of resources to send dummy traffic and we try to share it among sensors so as to maximize the degree of anonymity of the system. Through simulation, we illustrate that the proposed technique is efficient in protecting location information from the eavesdropper

    Source-destination obfuscation in wireless ad hocnetworks

    Get PDF
    The identity and/or location of communicating entities in wireless ad hocnetworks is extremely important due to the potential of their being identified and subsequently subjected to cyber or physical attacks. In this paper, we show that a global attacker who can eavesdrop on the overall data transmissions and count them can simply visualize the transmissions and infer contextual information. Current approaches to obfuscate the locations of source and destinations do not provide protection against such attacks. We propose two novel techniques (1) SECLOUD: Source and Destination Seclusion using Clouds to obfuscate the true source/destination nodes and make them indistinguishable among a group of neighbor nodes, and (2) ANONYRING: Anonymous Ring which hides the source/destination nodes within a group of nodes that form a ring. Both proposed techniques work well even under network-wide traffic visualization by a global attacker. Furthermore the proposed techniques are shown viasimulation to be superior to existing schemes in the literature. © 2010 John Wiley & Sons, Ltd

    Source Anonymity in WSNs against Global Adversary Utilizing Low Transmission Rates with Delay Constraints

    Get PDF
    Wireless sensor networks (WSN) are deployed for many applications such as tracking and monitoring of endangered species, military applications, etc. which require anonymity of the origin, known as Source Location Privacy (SLP). The aim in SLP is to prevent unauthorized observers from tracing the source of a real event by analyzing the traffic in the network. Previous approaches to SLP such as Fortified Anonymous Communication Protocol (FACP) employ transmission of real or fake packets in every time slot, which is inefficient. To overcome this shortcoming, we developed three different techniques presented in this paper. Dummy Uniform Distribution (DUD), Dummy Adaptive Distribution (DAD) and Controlled Dummy Adaptive Distribution (CAD) were developed to overcome the anonymity problem against a global adversary (which has the capability of analyzing and monitoring the entire network). Most of the current techniques try to prevent the adversary from perceiving the location and time of the real event whereas our proposed techniques confuse the adversary about the existence of the real event by introducing low rate fake messages, which subsequently lead to location and time privacy. Simulation results demonstrate that the proposed techniques provide reasonable delivery ratio, delay, and overhead of a real event's packets while keeping a high level of anonymity. Three different analysis models are conducted to verify the performance of our techniques. A visualization of the simulation data is performed to confirm anonymity. Further, neural network models are developed to ensure that the introduced techniques preserve SLP. Finally, a steganography model based on probability is implemented to prove the anonymity of the techniques.https://doi.org/10.3390/s1607095

    Preserving Source-Location Privacy through Redundant Fog Loop for Wireless Sensor Networks

    Get PDF
    A redundant fog loop-based scheme is proposed to preserve the source node-location privacy and achieve energy efficiency through two important mechanisms in wireless sensor networks (WSNs). The first mechanism is to create fogs with loop paths. The second mechanism creates fogs in the real source node region as well as many interference fogs in other regions of the network. In addition, the fogs are dynamically changing, and the communication among fogs also forms the loop path. The simulation results show that for medium-scale networks, our scheme can improve the privacy security by 8 fold compared to the phantom routing scheme, whereas the energy efficiency can be improved by 4 fold.Location: Liverpool, UNITED KINGDOMDate: OCT 26-28, 201
    corecore