2,488 research outputs found

    Apparatus for histological validation of in vivo and ex vivo magnetic resonance imaging of the human prostate

    Get PDF
    This article describes apparatus to aid histological validation of magnetic resonance imaging studies of the human prostate. The apparatus includes a 3D-printed patientspecific mold that facilitates aligned in vivo and ex vivo imaging, in situ tissue fixation, and tissue sectioning with minimal organ deformation. The mold and a dedicated container include MRI-visible landmarks to enable consistent tissue positioning and minimize image registration complexity. The inclusion of high spatial resolution ex vivo imaging aids in registration of in vivo MRI and histopathology data

    Improved Diagnostics by Assessing the Micromorphology of Breast Calcifications via X-Ray Dark-Field Radiography

    Get PDF
    Breast microcalcifications play an essential role in the detection and evaluation of early breast cancer in clinical diagnostics. However, in digital mammography, microcalcifications are merely graded with respect to their global appearance within the mammogram, while their interior microstructure remains spatially unresolved and therefore not considered in cancer risk stratification. In this article, we exploit the sub-pixel resolution sensitivity of X-ray dark-field contrast for clinical microcalcification assessment. We demonstrate that the micromorphology, rather than chemical composition of microcalcification clusters (as hypothesised by recent literature), determines their absorption and small-angle scattering characteristics. We show that a quantitative classification of the inherent microstructure as ultra-fine, fine, pleomorphic and coarse textured is possible. Insights underlying the micromorphological nature of breast calcifications are verified by comprehensive high-resolution micro-CT measurements. We test the determined microtexture of microcalcifications as an indicator for malignancy and demonstrate its potential to improve breast cancer diagnosis, by providing a non-invasive tool for sub-resolution microcalcification assessment. Our results indicate that dark-field imaging of microcalcifications may enhance the diagnostic validity of current microcalcification analysis and reduce the number of invasive procedures

    Improved Diagnostics by Assessing the Micromorphology of Breast Calcifications via X-Ray Dark-Field Radiography

    Get PDF
    Breast microcalcifications play an essential role in the detection and evaluation of early breast cancer in clinical diagnostics. However, in digital mammography, microcalcifications are merely graded with respect to their global appearance within the mammogram, while their interior microstructure remains spatially unresolved and therefore not considered in cancer risk stratification. In this article, we exploit the sub-pixel resolution sensitivity of X-ray dark-field contrast for clinical microcalcification assessment. We demonstrate that the micromorphology, rather than chemical composition of microcalcification clusters (as hypothesised by recent literature), determines their absorption and small-angle scattering characteristics. We show that a quantitative classification of the inherent microstructure as ultra-fine, fine, pleomorphic and coarse textured is possible. Insights underlying the micromorphological nature of breast calcifications are verified by comprehensive high-resolution micro-CT measurements. We test the determined microtexture of microcalcifications as an indicator for malignancy and demonstrate its potential to improve breast cancer diagnosis, by providing a non-invasive tool for sub-resolution microcalcification assessment. Our results indicate that dark-field imaging of microcalcifications may enhance the diagnostic validity of current microcalcification analysis and reduce the number of invasive procedures

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Towards virtual histology with X-ray grating interferometry

    Full text link
    Breast cancer is the most common type of cancer worldwide. Diagnosing breast cancer relies on clinical examination, imaging and biopsy. A core-needle biopsy enables a morphological and biochemical characterization of the cancer and is considered the gold standard for breast cancer diagnosis. A histopathological examination uses high-resolution microscopes with outstanding contrast in the 2D plane, but the spatial resolution in the third, Z-direction, is reduced. In the present paper, we propose two high-resolution table-top systems for phase-contrast X-ray tomography of soft-tissue samples. The first system implements a classical Talbot-Lau interferometer and allows to perform ex-vivo imaging of human breast samples with a voxel size of 5.57 μm. The second system with a comparable voxel size relies on a Sigray MAAST X-ray source with structured anode. For the first time, we demonstrate the applicability of the latter to perform X-ray imaging of human breast specimens with ductal carcinoma in-situ. We assessed image quality of both setups and compared it to histology. We showed that both setups made it possible to target internal features of breast specimens with better resolution and contrast than previously achieved, demonstrating that grating-based phase-contrast X-ray CT could be a complementary tool for clinical histopathology

    Deep-tissue optical imaging of near cellular-sized features

    Get PDF
    Detection of biological features at the cellular level with sufcient sensitivity in complex tissue remains a major challenge. To appreciate this challenge, this would require fnding tens to hundreds of cells (a 0.1 mm tumor has ~125 cells), out of ~37 trillion cells in the human body. Near-infrared optical imaging holds promise for high-resolution, deep-tissue imaging, but is limited by autofuorescence and scattering. To date, the maximum reported depth using second-window near-infrared (NIR-II: 1000–1700 nm) fuorophores is 3.2 cm through tissue. Here, we design an NIR-II imaging system, “Detection of Optically Luminescent Probes using Hyperspectral and difuse Imaging in Near-infrared” (DOLPHIN), that resolves these challenges. DOLPHIN achieves the following: (i) resolution of probes through up to 8 cm of tissue phantom; (ii) identifcation of spectral and scattering signatures of tissues without a priori knowledge of background or autofuorescence; and (iii) 3D reconstruction of live whole animals. Notably, we demonstrate noninvasive real-time tracking of a 0.1 mm-sized fuorophore through the gastrointestinal tract of a living mouse, which is beyond the detection limit of current imaging modalities.Untied States. National Cancer Institute. Cancer Center Support (Grant P30-CA14051)United States. National Cancer Institute. Center for Cancer Nanotechnology Excellence (Grant 5-U54-CA151884-03
    corecore