1,683 research outputs found

    A Rule of Persons, Not Machines: The Limits of Legal Automation

    Get PDF

    Enhancing Trust in Devices and Transactions of the Internet of Things

    Get PDF
    With the rise of the Internet of Things (IoT), billions of smart embedded devices will interact frequently.These interactions will produce billions of transactions.With IoT, users can utilize their phones, home appliances, wearables, or any other wireless embedded device to conduct transactions.For example, a smart car and a parking lot can utilize their sensors to negotiate the fees of a parking spot.The success of IoT applications highly depends on the ability of wireless embedded devices to cope with a large number of transactions.However, these devices face significant constraints in terms of memory, computation, and energy capacity.With our work, we target the challenges of accurately recording IoT transactions from resource-constrained devices. We identify three domain-problems: a) malicious software modification, b) non-repudiation of IoT transactions, and c) inability of IoT transactions to include sensors readings and actuators.The motivation comes from two key factors.First, with Internet connectivity, IoT devices are exposed to cyber-attacks.Internet connectivity makes it possible for malicious users to find ways to connect and modify the software of a device.Second, we need to store transactions from IoT devices that are owned or operated by different stakeholders.The thesis includes three papers. In the first paper, we perform an empirical evaluation of Secure Boot on embedded devices.In the second paper, we propose IoTLogBlock, an architecture to record off-line transactions of IoT devices.In the third paper, we propose TinyEVM, an architecture to execute off-chain smart contracts on IoT devices with an ability to include sensor readings and actuators as part of IoT transactions

    Decentralized Decision Making for Limited Resource Allocation Using a Private Blockchain Network in an IoT (Internet of Things) Environment with Conflicting Agents

    Get PDF
    Blockchains have gotten popular in recent times, owing to the security, anonymity, and lack of any third-party involvement. Blockchains essentially are record keeping tools that record any transactions between involved parties. One of the key aspects of handling and navigating of any autonomous traffic on the streets, is secured and simple means of communication. This thesis explores distribution of minimum resources between multiple autonomous agents, by settling conflicts using events of random nature. The thesis focusses on two specific events, tossing of a coin and the game of rock, paper, and scissors (RPS). An improvement on the traditional game of RPS is further suggested, called rock, paper, scissors, and hammer (RPSH). And then seamless communication interface to enable secure interaction is setup using blockchains with smart contracts. A new method of information exchange called Sealed Envelope Exchange is proposed to eliminate any involvement of third-party agents in the monitoring of conflict resolution. A scenario of assigning the sole remaining parking spot in a filled parking space, between two vehicles is simulated and then the conflict is resolved in a fair manner without involving a third-party agent. This is achieved by playing a fair game of RPSH by using blockchains and simulating cross chain interaction to ensure that any messages and transactions during the game are secured
    • …
    corecore