283 research outputs found

    Community-aware network sparsification

    Full text link
    Network sparsification aims to reduce the number of edges of a network while maintaining its structural properties; such properties include shortest paths, cuts, spectral measures, or network modularity. Sparsification has multiple applications, such as, speeding up graph-mining algorithms, graph visualization, as well as identifying the important network edges. In this paper we consider a novel formulation of the network-sparsification problem. In addition to the network, we also consider as input a set of communities. The goal is to sparsify the network so as to preserve the network structure with respect to the given communities. We introduce two variants of the community-aware sparsification problem, leading to sparsifiers that satisfy different connectedness community properties. From the technical point of view, we prove hardness results and devise effective approximation algorithms. Our experimental results on a large collection of datasets demonstrate the effectiveness of our algorithms.https://epubs.siam.org/doi/10.1137/1.9781611974973.48Accepted manuscrip

    HIGH-PERFORMANCE SPECTRAL METHODS FOR COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

    Get PDF
    Recent research shows that by leveraging the key spectral properties of eigenvalues and eigenvectors of graph Laplacians, more efficient algorithms can be developed for tackling many graph-related computing tasks. In this dissertation, spectral methods are utilized for achieving faster algorithms in the applications of very-large-scale integration (VLSI) computer-aided design (CAD) First, a scalable algorithmic framework is proposed for effective-resistance preserving spectral reduction of large undirected graphs. The proposed method allows computing much smaller graphs while preserving the key spectral (structural) properties of the original graph. Our framework is built upon the following three key components: a spectrum-preserving node aggregation and reduction scheme, a spectral graph sparsification framework with iterative edge weight scaling, as well as effective-resistance preserving post-scaling and iterative solution refinement schemes. We show that the resultant spectrally-reduced graphs can robustly preserve the first few nontrivial eigenvalues and eigenvectors of the original graph Laplacian and thus allow for developing highly-scalable spectral graph partitioning and circuit simulation algorithms. Based on the framework of the spectral graph reduction, a Sparsified graph-theoretic Algebraic Multigrid (SAMG) is proposed for solving large Symmetric Diagonally Dominant (SDD) matrices. The proposed SAMG framework allows efficient construction of nearly-linear sized graph Laplacians for coarse-level problems while maintaining good spectral approximation during the AMG setup phase by leveraging a scalable spectral graph sparsification engine. Our experimental results show that the proposed method can offer more scalable performance than existing graph-theoretic AMG solvers for solving large SDD matrices in integrated circuit (IC) simulations, 3D-IC thermal analysis, image processing, finite element analysis as well as data mining and machine learning applications. Finally, the spectral methods are applied to power grid and thermal integrity verification applications. This dissertation introduces a vectorless power grid and thermal integrity verification framework that allows computing worst-case voltage drop or thermal profiles across the entire chip under a set of local and global workload (power density) constraints. To address the computational challenges introduced by the large 3D mesh-structured thermal grids, we apply the spectral graph reduction approach for highly-scalable vectorless thermal (or power grids) verification of large chip designs. The effectiveness and efficiency of our approach have been demonstrated through extensive experiments

    Sparsification of Social Networks Using Random Walks

    Get PDF
    Analysis of large network datasets has become increasingly important. Algorithms have been designed to find many kinds of structure, with numerous applications across the social and biological sciences. However, a tradeoff is always present between accuracy and scalability; otherwise promising techniques can be computationally infeasible when applied to networks with huge numbers of nodes and edges. One way of extending the reach of network analysis is to sparsify the graph by retaining only a subset of its edges. The reduced network could prove much more tractable. For this thesis, I propose a new sparsification algorithm that preserves the properties of a random walk on the network. Specifically, the algorithm finds a subset of edges that best preserves the stationary distribution of a random walk by minimizing the Kullback-Leibler divergence between a walk on the original and sparsified graphs. A highly efficient greedy search strategy is developed to optimize this objective. Experimental results are presented that test the performance of the algorithm on the influence maximization task. These results demonstrate that sparsification allows near-optimal solutions to be found in a small fraction of the runtime that would required using the full network. Two cases are shown where sparsification allows an influence maximization algorithm to be applied to a dataset that previous work had considered intractable

    Matrix Scaling and Balancing via Box Constrained Newton's Method and Interior Point Methods

    Full text link
    In this paper, we study matrix scaling and balancing, which are fundamental problems in scientific computing, with a long line of work on them that dates back to the 1960s. We provide algorithms for both these problems that, ignoring logarithmic factors involving the dimension of the input matrix and the size of its entries, both run in time O~(mlogκlog2(1/ϵ))\widetilde{O}\left(m\log \kappa \log^2 (1/\epsilon)\right) where ϵ\epsilon is the amount of error we are willing to tolerate. Here, κ\kappa represents the ratio between the largest and the smallest entries of the optimal scalings. This implies that our algorithms run in nearly-linear time whenever κ\kappa is quasi-polynomial, which includes, in particular, the case of strictly positive matrices. We complement our results by providing a separate algorithm that uses an interior-point method and runs in time O~(m3/2log(1/ϵ))\widetilde{O}(m^{3/2} \log (1/\epsilon)). In order to establish these results, we develop a new second-order optimization framework that enables us to treat both problems in a unified and principled manner. This framework identifies a certain generalization of linear system solving that we can use to efficiently minimize a broad class of functions, which we call second-order robust. We then show that in the context of the specific functions capturing matrix scaling and balancing, we can leverage and generalize the work on Laplacian system solving to make the algorithms obtained via this framework very efficient.Comment: To appear in FOCS 201
    corecore