
University of Central Florida University of Central Florida

STARS STARS

HIM 1990-2015

2015

Sparsification of Social Networks Using Random Walks Sparsification of Social Networks Using Random Walks

Bryan Wilder
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/honorstheses1990-2015

University of Central Florida Libraries http://library.ucf.edu

This Open Access is brought to you for free and open access by STARS. It has been accepted for inclusion in HIM

1990-2015 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Wilder, Bryan, "Sparsification of Social Networks Using Random Walks" (2015). HIM 1990-2015. 1754.
https://stars.library.ucf.edu/honorstheses1990-2015/1754

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236292364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/honorstheses1990-2015
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses1990-2015
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/honorstheses1990-2015/1754?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SPARSIFICATION OF SOCIAL NETWORKS USING RANDOM WALKS

by

BRYAN WILDER

A thesis submitted in partial fulfillment of the requirements
for the Honors in the Major Program in Computer Science

in the College of Engineering and Computer Science
and the Burnett Honors College

at the University of Central Florida
Orlando, FL

Spring Term 2015

Thesis Chair: Gita Sukthankar, PhD

c© 2015 Bryan Wilder

ii

ABSTRACT

Analysis of large network datasets has become increasingly important. Algorithms have been

designed to find many kinds of structure, with numerous applications across the social and bio-

logical sciences. However, a tradeoff is always present between accuracy and scalability; other-

wise promising techniques can be computationally infeasible when applied to networks with huge

numbers of nodes and edges. One way of extending the reach of network analysis is to sparsify

the graph by retaining only a subset of its edges. The reduced network could prove much more

tractable.

For this thesis, I propose a new sparsification algorithm that preserves the properties of a random

walk on the network. Specifically, the algorithm finds a subset of edges that best preserves the

stationary distribution of a random walk by minimizing the Kullback-Leibler divergence between

a walk on the original and sparsified graphs. A highly efficient greedy search strategy is developed

to optimize this objective. Experimental results are presented that test the performance of the

algorithm on the influence maximization task. These results demonstrate that sparsification allows

near-optimal solutions to be found in a small fraction of the runtime that would required using

the full network. Two cases are shown where sparsification allows an influence maximization

algorithm to be applied to a dataset that previous work had considered intractable.

iii

DEDICATION

This thesis is dedicated my family. The last four years would not have been possible without their
support, advice, and company.

iv

ACKNOWLEDGMENTS

First, I extend my sincerest gratitude to my adviser, Dr. Gita Sukthankar, for her essential
guidance throughout the development of this thesis. Next, I would like to thank the other mentors
who have spent countless hours working with me over the last few years. In particular, Dr. Anne
Kandler and Dr. Kenneth Stanley have provided invaluable advice and helped teach me what it

means to do research. Lastly, I thank my parents, John Wilder and Taru Wilder, who taught me to
follow my passion and supported me every step of the way.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: PREVIOUS WORK . 3

Sparsification . 3

Application-based sparsifiers . 3

Spectral and cut sparsifiers . 4

Backbone detection . 5

Influence maximization . 6

Problem overview . 6

Submodularity and the greedy algorithm . 7

Heuristic approaches . 8

CHAPTER 3: METHODOLOGY . 10

Objective formulation . 10

Problem statement . 14

vi

Proposed algorithm . 15

Runtime analysis . 15

Lazy Evaluation and Submodularity . 16

CHAPTER 4: RESULTS . 19

Theoretical analysis . 19

Experimental design . 24

Datasets . 24

Influence maximization algorithms . 25

Sparsification algorithms . 26

Experimental results . 26

Influence spread . 27

Speedup . 29

Scaling to large networks . 31

CHAPTER 5: CONCLUSION . 34

LIST OF REFERENCES . 36

vii

LIST OF FIGURES

4.1 Influence spread for the net-HEP dataset . 28

4.2 Influence spread for the email-Enron dataset 29

4.3 Runtime for the net-HEP dataset . 30

4.4 Runtime for the email-Enron dataset . 31

4.5 CELF applied to the email-Enron dataset . 32

4.6 InfluMax applied to the net-HEP dataset . 33

viii

CHAPTER 1: INTRODUCTION

Analysis of large social networks offers many insights: detecting communities [8, 21, 6, 1], deter-

mining the most influential actors [15, 4], predicting the spread of influence [12, 17], and many

others. However, algorithms are always limited by their scalability, often putting massive datasets

out of reach. Real world networks of interest can contain millions of nodes and billions of edges,

which prevents many effective methods from being used in important situations.

One way to help existing algorithms scale to larger datasets is to construct a more concise represen-

tation of the network with fewer nodes or edges. If this new graph matches the structural properties

of the original, then analysis can be conducted with a smaller dataset and the results propagated

back to the original network. Sparsification is one such technique, in which all of the nodes of the

original graph are preserved but only a subset of edges are retained [25, 10, 19]. An effective spar-

sification method will preserve desirable features of the connectivity of the larger network with a

small number of edges, bringing the network within reach of other algorithms. As a preprocessing

step, sparsification must be highly computationally efficient in order to tackle large datasets that

are infeasible for more elaborate algorithms.

For this thesis, I develop and evaluate a new sparsification algorithm that is based on preserving

the properties of a random walk on the graph. The details of the algorithm are given in Chapter 3.

This method promises to fill a gap in the existing literature on sparsification, explored in Chapter 2.

Namely, it retains global properties of network organization while being simple, computationally

efficient, and working only on the topology of the network with no need for additional information.

This algorithm will be tested as a preprocessing step for network analysis on real data. The goal is

to enable analysis of datasets that are out of reach for current algorithms.

Chapter 2 reviews the existing literature on sparsification, as well as the target application for this

1

work, influence maximization. Chapter 3 then gives the problem formulation and introduces the

proposed algorithm. This section also includes runtime analysis of the algorithm and explores an

optimization strategy based on the principle of submodularity. Chapter 4 presents results related

to the performance of the algorithm. This includes theoretical analysis of the greedy optimization

strategy as well as empirical results from applying the algorithm to the influence maximization task

on two real world networks. The major conclusion from these experiments is that the proposed al-

gorithm allows influence maximization to be performed in a fraction of the time without sacrificing

the quality of the solution. This chapter concludes by giving two examples of influence maximiza-

tion algorithms that can be applied to unprecedentedly large networks using sparsification. In both

of these cases, previous work has concluded that running the given influence maximization algo-

rithm on a dataset of this size is infeasible. Lastly, Chapter 5 summarizes the contributions made

and offers suggestions for future work.

2

CHAPTER 2: PREVIOUS WORK

Relevant work includes both algorithms for sparsification and the algorithms that may benefit from

a sparsified graph. The first section discusses previous sparsification algorithms, while the second

explores the chosen application area, influence maximization.

Sparsification

Sparsification has been addressed by researchers working in a number of different disciplines and

communities. Previous algorithms can be roughly broken down into three categories depending on

their goals.

Application-based sparsifiers

Perhaps most relevant to the proposed work are sparsification algorithms designed specifically to

aid with particular network analysis tasks. For example Satuluri et al. [23] developed a sparsifica-

tion algorithm specifically for graph clustering. The underlying principle is to preferentially retain

edges between nodes that are in the same cluster by selecting edges between nodes with similar

neighbors. Thus, the structure that is retained is highly tuned to the application domain: clusters

should be preserved, but other forms of organization in the graph will be lost by design.

Another algorithm by Mathioudakis et al. [19] is specifically directed at influence maximization.

It uses a maximum likelihood method to find a set of edges that generate an observed set of influ-

ence cascades with the greatest probability. Notably, this method requires information beyond the

topology of the network: it uses example sets of node activations to produce the estimate. This is

3

useful for tasks where such data is available but limits its applicability when only the structure is

known. In contrast, the proposed algorithm operates only on the adjacency structure of the graph.

The proposed algorithm also departs from these sparsifiers in that it attempts to retain a more

general kind of structure associated with the flow of information through a network. Hopefully,

this will prove useful across multiple application domains.

Spectral and cut sparsifiers

Another class of sparsifiers developed in theoretical computer science preserves a given feature of

the graph to within some degree of precision. One prominent example is cut sparsifiers. These

algorithms produce a subgraph for which the value of every cut is preserved up to a multiplicative

factor of 1 ± ε. A result from Benczr and Karger [2] shows that such a sparsification can be

constructed in O(m log2 n) time for an unweighted graph and will contain O(n log n/ε2) edges.

This algorithm has primarily been used to construct more efficient approximation algorithms for

computing cuts and flows in graphs [10].

Spectral sparsifiers are a generalization of cut sparsifiers that preserve the Laplacian quadratic form

of the graph to within a multiplicative factor. Spielman and Teng [25] showed that a sparsification

with O(n log n/ε2) edges can be produced in O(m logc n) time for some constant c. Since the

eigenvalues of the Laplacian matrix are related many properties of dynamic processes on networks,

this sparsifier may be of interest for some network analysis problems. However, the method has

not been tested on real-world (or synthetic) graphs, so it unknown how useful the results are, or

whether the constant c is small enough to support effective scaling.

4

Backbone detection

Outside of computer science, methods for finding the “backbone” of a network have been devel-

oped by researchers working in other disciplines concerned with networks. Roughly, backbone

detection attempts to find a core structure of links that are in some way the most significant in

order to allow easier visualization and analysis. A traditional method for reducing edge density is

simple thresholding: in a weighted graph, setting a global threshold and removing all edges with

lower weights. However, this is clearly inappropriate for many real-world graphs, which display

a heavy-tailed degree distribution, because no global threshold is appropriate for all parts of the

network.

The first attempt at backbone detection was made by Serrano et al. [24]. They assume a null model

where the normalized weights of a node with degree k are drawn from a random subdivision of the

interval [0, 1] into k segments. Edges are retained by the “disparity filter” when they are significant

at level α with respect to this null distribution. This filter sets different thresholds depending on a

node’s degree, which avoids the problems of global thresholds. It is worth noting that this method

is only applicable to weighted networks.

Subsequent work has built on the disparity filter by proposing other null distributions by which

to model edge weights. For example, Foti et al. [9] introduce a nonparametric method that uses

the empirical distribution of edge weights at each node. Another recent algorithm developed by

Radicchi et al. [22] uses a null model where the adjacency structure of the network is fixed but

edge weights are randomly drawn from the empirical distribution of all weights in the network.

These methods are often useful for producing an illustrative summary of a network that contains

the most important connections at each node. However, it is important to note that, contrary to the

objective of this thesis, they do not attempt to preserve global properties of the network. Addition-

5

ally, they are only applicable to weighted networks.

Influence maximization

This thesis focuses on the application domain of influence maximization. The proposed algorithm

is primarily designed to preserve the dynamic properties of the network. Thus, applications dealing

with spreading processes and information flow are a natural fit. Influence maximization is one such

domain, and has been the subject of a great deal of research. This allows the present algorithm to

be benchmarked using a variety of existing methods.

Problem overview

The influence maximization problem, first formalized by Kempe, Kleinberger, and Tardos [15] as

a discrete optimization problem, is to choose a seed set of k nodes which will maximize the spread

of some information through a network. A model of influence propagation is assumed, where

nodes are activated by their neighbors, and then have some chance of activating other nodes, and

so on. The most popular models unfold in discrete time steps. In the Linear Threshold Model

(LTM) [14], nodes become active at each step once a sum of activations from their neighbors

passes a given threshold. In the Independent Cascade Model (ICM) [11], when a node becomes

active it has one chance to infect its neighbors, and does so with some probability pij set by the

underlying system. Kempe et al. [15] showed that the influence maximization problem is NP-hard

under both models. This hardness result has motivated a wide range of work on approximation

algorithms and heuristic optimization methods for the problem. Influence maximization appears

to be a hard problem in general, not just the problem formulated by Kempe et al. For example,

maximizing the influence spread under a continuous time transmission model was proven NP-hard

6

by Gomez-Rodriguez and Schölkopf [12]. Even good approximation ratios may be infeasible for

the general case. For example, Chen [3] showed that a related problem of finding the smallest

seed set which will influence the whole network (or a given fraction of it) cannot be approximated

within a polylogarithmic factor. These results hold even for a number of special cases, and positive

results were obtained only for extremely restricted classes of inputs such as trees.

Submodularity and the greedy algorithm

Approximation algorithms for influence maximization are commonly based on the property of

submodularity. Roughly, submodularity formalizes the property of diminishing returns in the ob-

jective function of the influence maximization problem. Given a ground set of items X , a function

f : P(X) → R if f({x} ∪ A) − f(A) ≤ f({x} ∪ B) − f(B) for all x ∈ X/(A ∪ B) and

A,B ∈ P(X) such that A ⊆ B. That is, the marginal value to adding an item x can only decrease

as additional items are selected. Kempe et al. proved that the objective function for influence max-

imization (the expected spread of a given seed set) is submodular under particular models. Later,

Mossel and Roch [20] extended this guarantee to a much more general setting. These results allow

researchers on influence maximization to draw on the well-developed body of work on maximizing

submodular functions. In particular, it is known that the greedy algorithm (defined as the one which

successively chooses the item with highest marginal gain) achieves an approximation ratio of 1− 1
e

when the objective function is submodular. Submodularity is critical; Kempe et al. showed that for

models where the influence spread is not submodular, it is hard to approximate within a factor n1−ε

for any ε > 0. Accordingly, Kempe el al. considered models where submodularity holds and intro-

duced the use of the greedy algorithm for performing influence maximization. Leskovec et al. [17]

improved on this algorithm by noting that submodularity allows lazy evaluation of the marginal

gains, which saves considerable computational cost. The resulting algorithm, called CELF, has

been widely used for influence maximization. It is important to note that even computing the influ-

7

ence spread of a set of nodes in common propagation models is #P-hard, as shown by Chen, Wang,

and Wang [4]. Accordingly, the greedy algorithms of Kempe et al. and Leskovec et al. approximate

the influence spread of the nodes under consideration via Monte Carlo simulations of the model.

This simulation is by far the most computationally intensive part of the method, and later work has

explored several ways to shortcut a full simulation of propagation through the network.

Heuristic approaches

Subsequent work on influence maximization has explored both heuristic optimization strategies

and alternative models. Chen, Wang, and Wang [4] conclude from the hardness of computing

influence spreads that strategies like CELF, which require this quantity to be explicitly evaluated,

are unlikely to scale well. Accordingly, they design a heuristic which considers only a local region

around each node and can be applied to graphs with millions of vertices. This algorithm, called

PMIA, represents the state of the art for the general influence maximization problem. It works by

considering a variation of the ICM called the maximum influence arborescence model (MIA). The

algorithm finds the shortest path between each pair of nodes, and then discards paths whose total

propagation probability falls below some threshold. Influence spreads in these arborescences can

be computed much more efficiently than the traditional ICM, allowing a greedy selection strategy

to run orders of magnitude faster. Another prominent method is the SP1M algorithm by Kimura

and Saito [16], which simplifies the ICM by only allowing nodes to be influenced along the shortest

path from the seed set, or a path that is at most one edge longer.

A different set of algorithms target the Linear Threshold Model. The LDAG algorithm [5] approx-

imates the propagation of influence by considering a directed acyclic graph (DAG) around each

node. Since influence in the Linear Threshold Model can be found in linear time when the graph

is a DAG (compared to the #P-Hard problem of calculating it for the general case), this algorithm

8

provides a significant speedup over the standard greedy method. Another approach is the SimPath

algorithm [13], which incorporates several optimizations. First, the authors note that influence in

the LTM can be computed through the simple paths outwards from the seed set alone. Although

enumerating simple paths is itself hard, since influence probabilities decay quickly, only a small

neighborhood is considered. Second, it also suffices in the LTM to find the spread of each node’s

out-neighbors, so the algorithm uses a heuristic to approximate a vertex cover of the graph, and

only computes the spread of nodes contained in the cover. Lastly, only the few most promising

nodes are evaluated at each iteration. Together, these improvements make SimPath significantly

more efficient than previous algorithms for the LTM.

Gomez-Rodriguez and Schölkopf [12] investigate an alternative model of influence propagation

which uses a continuous-time model, motivated by the observation that information travels along

different links in a network at varying speeds. They show that the influence spread in this model

can be analytically evaluated, and employ a greedy algorithm to maximize it. Better results are

achieved than PMIA, SP1M, and CELF, demonstrating the value of a continuous time approach.

However, their algorithm is considerably less scalable and becomes infeasible for graphs with more

than a thousand nodes.

Influence maximization is a topic that has received much attention due to its wide potential appli-

cations. Because state of the art methods often confront challenges to scalability, it is a promising

application for sparsification algorithms.

9

CHAPTER 3: METHODOLOGY

Many questions of interest, such as influence maximization, deal in some way with the behavior

of processes taking place on a network. A good proxy for such behavior is a random walk, which

gives a generic model of dynamic processes. Subject to certain connectivity conditions, a random

walk on a graph is an irreducible and aperiodic Markov chain which converges to a stationary

distribution over the vertices independently of the initial condition. The proposed algorithm finds

a sparsification which approximately preserves this limiting behavior. It does so by minimizing

the Kullback-Leibler divergence between the stationary distribution of a walk on the original and

sparsified networks.

Objective formulation

The stationary distribution of a walk on a random graph is given by

π(i) =
d(i)

2|E|
.

That is, the walk spends time at each node i proportional to its degree d(i). Now, let E ′ ⊂ E be a

sparsification of the network. Let dE′(i) be the degree of node i, considering only edges contained

in E ′. The Kullback-Leibler divergence between the distribution of a walk on the original and

10

sparsified graphs is

DKL(π||πE′) =
∑
i

πi log
π(i)

πE′(i)

=
∑
i

π(i)

[
log

d(i)

2|E|
− log

dE′(i)

2|E ′|

]
=
∑
i

π(i)

[
log

d(i)

dE′(i)
+ log

|E ′|
|E|

]
=
∑
i

π(i)

[
log

d(i)

dE′(i)

]
+ log

|E ′|
|E|

The final expression has two noteworthy properties. First, the final term depends only on the

cardinality of E ′. Therefore, it is invariant with respect to particular the choice of edges. Second,

the summation is over terms which depend only on the degree of each node. That is, the objective

function is local in the sense that the value of any given edge depends only on the terms in the

summation corresponding to its endpoints, and no others. This will prove important for efficient

optimization.

Unfortunately, it will not be possible to use this formulation in general because a sparsification

could assign some node a degree of zero, resulting in an infinite KL divergence. However, it is

possible to add a small modification to the input graph so that the terms are always finite. Specifi-

cally, we can consider a random surfer (as in the PageRank algorithm) instead of a random walker.

A random surfer takes a step in the random walk with probability 1− τ for some τ > 0, and with

probability τ teleports to a random node in the graph. This teleportation probability is equivalent

to adding directed edges from every vertex to every other vertex with sufficient weight so that one

of these supplementary edges is followed with probability τ no matter what vertex the walker is

at. In effect, the graph is fully connected by a set of weak edges, guaranteeing the existence of a

11

stationary distribution and a finite KL divergence.

As the algorithm progresses, maintaining a constant probability τ requires adjusting these weights.

Let Ek be a subset of k edges: the set of edges obtained after the algorithm has been run for k

steps. Let d(i) be the degree of vertex i not counting these supplementary edges and dEk
(i) be

the degree of i considering only edges which are included in Ek. Now, we will calculate the total

weight which must be added outgoing from each vertex to create a teleportation probability of τ .

Call this total weight w. For each vertex we have

w

w + dEk
(i)

= τ

which implies

w =
τ

1− τ
dEk

(i).

Summing over all vertices, the weight directed towards each vertex is

cEk
,
∑
j

1

n

(
τ

1− τ

)
dEk

(j)

=
1

n

(
τ

1− τ

)
|Ek|

which gives each vertex a final weight of dEk
(i) + cEk

. The corresponding total weight in the

graph is 1
1−τ |Ek|. Having obtained these totals, we can derive the objective to be minimized. Call

the stationary distribution of a random walk on the original graph π and the distribution on the

12

subgraph πEk
. The Kullback-Leibler divergence given a sparsification Ek is

DKL(π||πEk
) =

∑
i

πi log
π(i)

πEk
(i)

=
∑
i

π(i)

[
log

d(i) + cE

2
(

1
1−τ

)
|E|
− log

dEk
(i) + cEk

2
(

1
1−τ

)
|Ek|

]

=
∑
i

π(i)

[
log

d(i) + cE
dEk

(i) + cEk

+ log
|Ek|
|E|

]
=
∑
i

π(i) log
d(i) + cE

dEk
(i) + cEk

+ log
|Ek|
|E|

.

The reduction in the divergence after adding an edge (p, q) is

DKL(π||πEk
)−DKL(π||πEk+1

) =

[∑
i

π(i) log
d(i) + cE

dEk
(i) + cEk

+ log
|Ek|
|E|

]
−[∑

i

π(i) log
d(i) + cE

dEk+1
(i) + cEk+1

+ log
|Ek+1|
|E|

]

=
∑
i

π(i) log
dEk+1

(i) + cEk+1

dEk
(i) + cEk

+ log
|Ek|
|Ek+1|

=
∑
i/∈{p,q}

π(i) log
dEk

(i) + cEk+1

dEk
(i) + cEk

+
∑
i∈{p,q}

π(i) log
dEk

(i) + 1 + cEk+1

dEk
(i) + cEk

+

log
|Ek|
|Ek+1|

.

The first term in this expression sums over all vertices that are not endpoints of the newly added

edge. This term is small because the only change to the degree of these vertices comes from

manipulations of the ”teleport” edges in order to keep the total probability of teleportation constant.

In fact, this change is small enough to be ignored in the optimization. Assuming that vertices have

13

degree O(1), as is typical for real world networks:

∑
i/∈{p,q}

π(i) log
dEk

(i) + cEk+1

dEk
(i) + cEk

=
∑
i/∈{p,q}

π(i) log
dEk

(i) + 1
n

(
τ

1−τ

)
|Ek+1|

dEk
(i) + 1

n

(
τ

1−τ

)
|Ek|

=
∑
i/∈{p,q}

π(i) log
dEk

(i) + 1
n

(
τ

1−τ

)
(|Ek|+ 1)

dEk
(i) + 1

n

(
τ

1−τ

)
|Ek|

=
∑
i/∈{p,q}

π(i) log

[
1 +

1
n

(
τ

1−τ

)
dEk

(i) + 1
n

(
τ

1−τ

)
|Ek|

]

=
∑
i/∈{p,q}

π(i) log

[
1 +

1
n

(
τ

1−τ

)
O(1) + 1

n

(
τ

1−τ

)
O(n)

]

=
∑
i/∈{p,q}

π(i) log

[
1 +O

(
1

n

)]

<
∑
i

π(i) log

[
1 +O

(
1

n

)]
= log

[
1 +O

(
1

n

)]
.

This term quickly goes to 0 as n increases. Accordingly, we will not consider this term in the

subsequent analysis, and will simply augment the degree of each node by cEk
to ensure that the

stationary distribution exists at each step. Where this term does not impact the results, it will be

absorbed into the degree of each node to keep notation compact.

Problem statement

Given this formulation of the objective, we wish to solve the problem

Ek = arg min
E′⊂E,|E′|≤k

DKL(π||πE′)

14

Here, k is the number of edges that the sparsification will contain. In practice, k could be fixed

ahead of time, or it could be chosen during the execution of the algorithm (e.g. stopping execution

when the marginal gain of adding an edge drops below some threshold).

Proposed algorithm

To introduce the proposed algorithm define for all E ′ ⊂ E, u ∈ E/E ′

∆DKL(E ′, u) = DKL(π||πE′)−DKL(π||πE′∪{u})

which is the marginal benefit of adding an edge u. The greedy algorithm maximizes this marginal

benefit at each stage of the algorithm:

E0 = ∅

Ek+1 = Ek ∪ arg max
u∈E/E′

∆DKL(Ek, u) ∀k < kmax

That is, each stage of the algorithm produces a sparsification with k + 1 edges from one with k

edges by maximizing the marginal gain of the edge that is added.

Runtime analysis

The computational cost of the algorithm comes from computing the marginal benefits and order-

ing them to choose the greatest. In order to minimize these costs, the marginal benefits can be

stored in a priority queue (implemented, e.g., using a binary heap) and updated only when neces-

sary. Because of the locality property of the objective, when an edge is added, the only marginal

benefits which change are those of edges which share a vertex with the most recent addition. For

15

each of these modifications, recomputation of the marginal benefit takes time O(1), and updat-

ing the priority queue takes time O(logm). Assuming that each node has degree O(1), realistic

for real-world networks, the runtime per iteration of the algorithm is O(logm) because only O(1)

adjustments to the heap are needed. Thus, final runtime isO(k logm). In this formulation, the run-

time depends only logarithmically on the size of the network. However, it will remain to be seen

experimentally whether larger networks require a proportionally greater number of edges, which

would imply a computational cost ofO(m logm). A potentially useful fact is that if sparsifications

of varying densities are needed for the same network, then the runtime depends only on the largest

number of edges desired. The greedy algorithm performs an online construction which finds all

sparsifications of lesser cardinality en route to the final solution.

Lazy Evaluation and Submodularity

The runtime of the proposed algorithm can be greatly decreased in practice by noting that the

marginal gain of adding each edge can be evaluated in a lazy manner. Leskovec et al. [17] showed

that when the objective function is submodular, the number of evaluations of marginal gains can be

greatly reduced. Specifically, each item can be marked as “valid” or “invalid”. In the first round,

each item is evaluated and the one with the greatest value is chosen. In subsequent rounds, every

item starts out marked as invalid. Then, the item with the greatest value is examined. If the item

is marked valid, it is chosen. If it is marked invalid, then its marginal gain is evaluated. The item

is then marked as valid and reinserted into the priority queue. The algorithm then draws the next

element from the queue, proceeding in this manner until the item with the greatest value is marked

valid. Importantly, this item can be chosen even if other elements are invalid. Submodularity

guarantees that an item’s value from a previous round serves as an upper bound on its value after

more items have been selected. Oftentimes, the best item at the start of the round will remain the

16

best after it has been reevaluated. In this case, that item can be selected immediately, saving the

evaluation of all of the other items.

Although the objective function considered here is not submodular, this is due only to a term that is

constant for all edges. Therefore, edges can be ranked according to a function that is submodular,

allowing the CELF optimization to be applied.

Theorem 1. Let f(E ′) be the negative Kullback-Leibler divergence between the stationary dis-

tribution of a random walk on graph G and on a sparsified graph with edges E ′. Then, f is

submodular up to an additive term independent of the edges contained in E ′

Proof. Given a sparsification E ′, the marginal gain to adding an edge x connecting nodes u and v

is

∆f(x,E ′) =
∑

i/∈{u,v}

π(i) log
dEk

(i) + cEk+1

dEk
(i) + cEk

+
∑

i∈{u,v}

π(i) log
dEk

(i) + 1 + cEk+1

dEk
(i) + cEk

+ log
|Ek|
|Ek+1|

.

The last term is independent of the choice of edges, so we will restrict consideration to the first

two terms. The first two terms are both submodular, so their nonnegative linear combination is

submodular as well. For both cases, we will use the property that for any constant c, the function

g(x) = log x+c
x

is monotonically decreasing in x because ∂g
∂x

= − c
cx+x2

< 0 for x > 0. Consider

the first term. Note that the definition of cEk
allows us to rewrite it as

∑
i/∈{u,v}

π(i) log
dEk

(i) + cEk
+ 1

n

(
τ

1−τ

)
dEk

(i) + cEk

.

Since |A| ≤ |B|, cA ≤ cB. Additionally, dA(i) ≤ dB(i)∀i ∈ V . Therefore, each term in the

summation is at least as great for A as for B. Now consider the second term. It may be rewritten

17

in the same manner as ∑
i∈{u,v}

π(i) log
dEk

(i) + cEk
+ 1

n

(
τ

1−τ

)
+ 1

dEk
(i) + cEk

and the same argument applies.

This result allows the CELF optimization to be incorporated into the proposed algorithm, greatly

reducing the number of evaluations which are needed in practice.

18

CHAPTER 4: RESULTS

This chapter presents an evaluation of the sparsification algorithm proposed for this thesis on both

a theoretical and empirical level. The first section is devoted to theoretical analysis. The following

two sections introduce the experimental design and present empirical results on the algorithm’s

performance.

Theoretical analysis

This section will analyze the greedy optimization strategy, and show that it obtains the optimal

sparsification with respect the KL divergence. As explained in Chapter 3, the objective function

for the sparsification problem can be expressed as

f(E ′) =
∑
i∈V

d(i)

2|E|

[
log

d(i)

dE′(i)
+ log

|E ′|
|E|

]
,

in which the summation decomposes into two terms. The first is specific to the edges which are

chosen for the sparsification, while the second depends only on the number of edges which are

chosen. Therefore, we can analyze the simpler function

g(E ′) =
∑
i∈V

d(i)

2|E|
log

d(i)

dE′(i)
, (4.1)

19

which omits the unnecessary term. It will be helpful to define the marginal gain of adding a single

edge u connecting vertices i and j as

∆g(E ′, u) = g(E ′)− g(E ′ ∪ {u})

=
∑
i∈V

d(i)

2|E|
log

dE′∪{u}(i)

dE′(i)

=
d(i)

2|E|
log

dE′(i) + 1

dE′(i)
+
d(j)

2|E|
log

dE′(j) + 1

dE′(j)
. (4.2)

The main result of this section is the following:

Theorem 2. Let Ek = arg min|E′|=k g(E ′) be the optimal sparsification with respect to g which

contains k edges. Then, Ek+1 = Ek ∪ {arg maxu∈E\Ek
∆g(Ek, u)}, 0 ≤ k < m.

From this, it easily follows that the greedy algorithm outlined in Chapter 3 achieves the optimal

value. In order to prove Theorem 2, we will need the following lemma:

Lemma 1. If for some sparsification E ′ there exist subsets of edges A ⊆ E ′, B ⊆ E\E ′ such that

|A| = |B| and ∆g(E ′\A,B) > ∆g(E ′\A,A) then there exist edges eA ∈ A and eB ∈ B such that

∆g(E ′\{eA}, {eB}) > ∆g(E ′\{eA}, {eA})

Proof. Suppose that there exist no such edges. Then, we can find an upper bound on g(E ′\A,B)

and a lower bound on ∆g(E ′\A,A) which together imply ∆g(E ′\A,A) ≥ ∆g(E ′\A,B), a

contradiction of the hypothesis. Start with the upper bound on ∆g(E ′\A,B). Let ∆d(i) =

20

d(E′\A)∪B(i)− dE′\A(i). Then,

∆g(E ′\A,B) =
∑
i∈V

log
d(i) + ∆d(i)

d(i)

=
∑
i∈V

log
d(i) + 1

d(i)
+ log

d(i) + 2

d(i) + 1
+ ...+ log

d(i) + ∆d(i)

d(i) + ∆d(i)− 1

≤
∑
i∈V

∆d(i) log
d(i) + 1

d(i)

=
∑
u∈A

∆g(E ′\A, u)

where the final equality follows because B and E ′ are disjoint. A similar argument lets us find a

lower bound on ∆g(E ′\A,A). Let ∆d(i) = dE′(i)− dE′\A(i). We have

∆g(E ′\A,A) =
∑
i∈V

log
d(i) + ∆d(i)

d(i)

=
∑
i∈V

log
d(i) + 1

d(i)
+ log

d(i) + 2

d(i) + 1
+ ...+ log

d(i) + ∆d(i)

d(i) + ∆d(i)− 1

≥
∑
i∈V

∆d(i) log
d(i) + ∆d(i)

d(i) + ∆d(i)− 1

=
∑
u∈A

∆g(E ′\A, u)

where the last equality follows because A ⊂ E ′. Supposing that there are no edges eA ∈ A and

eB ∈ B with ∆g(E ′\A, eb) > ∆g(E ′\A, eA), then
∑

u∈A ∆g(E ′\A, u) ≥
∑

u∈B ∆g(E ′\A, u).

Combining these bounds we have

∆g(E ′\A,B) ≤
∑
u∈B

∆g(E ′\A, u) ≤
∑
u∈A

∆g(E ′\A, u) ≤ ∆g(E ′\A,A)

which contradicts the hypothesis that ∆g(E ′\A,B) > ∆g(E ′\A,A). Therefore, we must con-

clude that the desired edges exist.

21

This lemma gives us the necessary tools to prove the main result.

Proof of Theorem 1. The statement follows by induction. The base case holds trivially. E0 = ∅ so

E1 = {arg max
u∈E

∆g(∅, u)}

= E0 ∪ {arg max
u∈E\E0

∆g(E0, u)}

Now assume that the Ei+1 = Ei ∪ {arg maxu∈E\Ei
∆g(Ei, u)} ∀i < k and we will show that

the statement holds for k. This is because after adding the next edge, it will never become

preferable to exchange edges included in Ek for edges that were previously excluded. Let e∗ =

arg maxu∈E\Ek
∆g(Ek, u). For now, define Ek+1 , Ek ∪ {e∗}, and the proof will show that Ek+1

is in fact the optimal set of k + 1 edges.

Suppose for contradiction that there exist subsets A ⊆ Ek+1 and B ⊆ E\Ek+1 with |A| = |B| and

∆g(Ek+1\A,B) > ∆g(Ek+1\A,A). Then, by Lemma 1 there exist edges eA ∈ A and eB ∈ B

such that ∆g(Ek+1\{eA}, {eB}) > ∆g(Ek+1\{eA}, {eA}). That is, there is at least one unincluded

edge that it would be preferable to include in Ek+1 over an existing edge.

Case 1: eA does not share a vertex with e∗. Because Ek is optimal, ∆g(Ek\{eA}, {eA}) ≥

∆g(Ek\{eA}, {eB}). However, because neither eA or eB share a vertex with e∗, no term in

the summation in Equation 4.2 changes for either edge. Therefore, ∆g(Ek+1\{eA}, {eA}) ≥

∆g(Ek+1\{eA}, {eB}), which contradicts the assertion that there exist such an eA and eB.

Case 2: eA shares a vertex with e∗, and this vertex is also shared with eB. Call the common vertex

i. Call the vertex of eA that is not common with eB vertex j, and the corresponding vertex for

eB vertex k. Because i is common to eA and eB, the summations in ∆g(Ek+1\{eA}, {eA}) and

∆g(Ek+1\{eA}, {eB}) differ only at the terms related to the vertices that are not shared. Therefore,

22

∆g(Ek+1\{eA}, {eB}) > ∆g(Ek+1\{eA}, {eA}) can only hold if the term for k is greater than the

term for j. But, if this were true then we would have ∆g(Ek\{eA}, {eB}) ≥ g(Ek\{eA}, {eA})

because all terms except the one related to vertex i are unchanged by the addition of e∗. This

contradicts that Ek is optimal because it would have been preferable to include eB at some earlier

stage.

Case 3: eA shares a vertex with e, and this vertex is not shared with eB. Note that e∗’s other vertex

may be shared with eB without substantially altering the argument since this only decreases the

marginal value of eB. Call the shared vertex i, the other vertex belonging to eA vertex k, the other

vertex belonging to e∗ vertex j, and the vertices of eB m and n. Because e∗ /∈ Ek, we must have

d(k)

2|E|
dEk

(k)

dEk
(k)− 1

≥ d(j)

2|E|
dEk

(j) + 1

dEk
(j)

since all other terms of the respective ∆g functions are equal. Additionally, because e∗ is the

optimal edge to add, it must hold that

d(i)

2|E|
dEk

(i) + 1

dEk
(i)

+
d(j)

2|E|
dEk

(j) + 1

dEk
(j)

≥ d(m)

2|E|
dEk

(m) + 1

dEk
(m)

+
d(n)

2|E|
dEk

(n) + 1

dEk
(n)

,

again because all other terms in the summation are equal between e∗ and eB. Note also that the

degrees of k,m, and n do not change from Ek to Ek+1, while the degree of i increases by one.

Together, these facts imply

d(i)

2|E|
dEk+1

(i)

dEk+1
(i)− 1

+
d(k)

2|E|
dEk+1

(k)

dEk+1
(k)− 1

≥ d(m)

2|E|
dEk+1

(m) + 1

dEk+1
(m)

+
d(n)

2|E|
dEk+1

(n) + 1

dEk+1
(n)

,

which in turn proves that ∆g(Ek+1\{eA}, {eA}) ≥ ∆g(Ek+1\{eA}, {eB}). This contradicts the

requirements that there exists such an eA and eB.

23

Because all cases result in a contradiction, we must reject the assumption that there exist subsets

A ⊆ Ek+1 and B ⊆ E\Ek+1 such that ∆g(Ek+1\A,B) > ∆g(Ek+1\A,A). If no such subsets

exist, then Ek+1 = Ek ∪ {e∗} is indeed the optimal set of k + 1 edges, as desired.

The conclusion from this section is that the chosen algorithmic approach is necessarily optimal

given the problem formulation. The following experimental results evaluate this formulation in

practice by testing the proposed algorithm as a preprocessing step for various influence maximiza-

tion problems.

Experimental design

In order to evaluate the practical benefits of applying sparsification, this section presents results

obtained from several real-world network datasets. The experiments focus on the use of sparsifica-

tion as a preprocessing step for influence maximization. Accordingly, the impact of sparsification

is examined for several different influence maximization algorithms, demonstrating that sparsifi-

cation allows high-quality results to obtained in a fraction of computational time that would be

required when using the entire network.

Datasets

There are two principle datasets used in this analysis:

• net-HEP: This is a collaboration network taken from the high-energy physics section of

the arXiv. The nodes correspond to authors, who are connected by an edge if they have

coauthored at least one paper together. This network contains 15,233 nodes and 31,398

24

edges. The data set has been frequently used as a test case for influence maximization [15,

4, 13] and is available from http://research.microsoft.com/en-us/people/weic/projects.aspx.

• email-Enron: This is the dataset of email correspondence from the Enron corporation. Nodes

correspond to employees, and edges link those who have exchanged at least one email. This

dataset is larger, containing 36,692 nodes and 183,831 edges. It is available from the SNAP

network repository [18].

Influence maximization algorithms

Several influence maximization algorithms are used for the experiments in this paper:

• CELF: The greedy algorithm of Leskovec et al. [17], which incorporates lazy evaluation of

marginal gains.

• SP1M: An algorithm by Kimura and Saito [16] which approximates the influence spread in

the ICM by assuming that each node can be influenced along the shortest path from the seed

set, or a path that is at most one edge longer.

• PMIA: A state of the art influence maximization algorithm by Chen et al. [4]. PMIA restricts

influence spread evaluations to a local area around each node.

• InfluMax: A recent algorithm developed by Gomez-Rodriguez and Schölkopf [12]. It per-

forms influence maximization in a continuous-time version of the ICM. InfluMax has been

shown to achieve higher influence spreads than previous approaches, but is not scalable to

large networks.

25

Sparsification algorithms

Several sparsification algorithms are evaluated based on how well they serve as a preprocessing

step for influence maximization. As explained in Chapter 2, previous sparsification methods are

not directly comparable to the algorithm developed here. The closest is that of Mathioudakis et al.

[19], which also deals with sparsification of influence networks. However, the authors assume that

the algorithm has access to observed traces of information diffusions in the network. The algorithm

proposed here uses only the adjacency structure of the network, so it would not be useful to directly

compare the two approaches. Accordingly, the proposed algorithm is compared to two baseline

approaches which represent common heuristics for such tasks. The algorithms considered are:

• RW: The random-walk based sparsifier proposed here.

• Degree: Rank edges according to the sum of the degrees of their endpoints and choose the

top k.

• Centrality: Rank edges according to the sum of the eigenvector centrality of their endpoints

and choose the top k.

Experimental results

This section presents the performance of each of the three sparsification algorithms on the chosen

datasets. The first two subsections deal with the tradeoff between the influence spread that is

achieved vs the computational time required for each influence maximization algorithm, while

the last subsection presents results in which the CELF and InfluMax algorithms are applied to

unprecedentedly large datasets using the proposed sparsification algorithm.

26

Influence spread

The objective of influence maximization is to compute the optimal seed set with respect to the ex-

pected influence spread on the graph. Therefore, the natural benchmark for a chosen sparsification

is how closely the influence spread achieved on the sparsified graph approaches the spread on the

full graph. The results presented here characterize the gain in influence spread as the sparsifier is

allowed to select an increasing fraction of edges in the graph. For each sparsifier and influence

maximization algorithm, the influence spread achieved using a given fraction of edges is compared

to that achieved on the full graph. Note that the objective function is always evaluated using the

complete graph: seed nodes are selected using the sparsified graph, and then the propagation model

is simulated on the full graph in order to calculate the influence spread. Figure 4.1 shows results

for the net-HEP dataset, and Figure 4.2 shows results for the email-Enron dataset. Due to its high

computational cost, CELF is not applied to the email-Enron dataset. InfluMax is not sufficiently

scalable to be directly applied to either full dataset. The colored lines show the influence spread

achieved by each sparsifier, while the black line provides the results obtained on the full graph for

comparison. Each influence maximization algorithm is given a budget of 50 nodes.

An immediate conclusion from these results is that sparsification is extremely effective for the

influence maximization task: only a small fraction of the original edges are needed to obtain the

same quality of results. This holds across both datasets. However, the sparsifiers under consid-

eration do not converge equally quickly to the optimal value. On the larger dataset, email-Enron,

the RW algorithm converges extremely quickly, while Degree and Centrality sometimes require as

much as 50% of the edges in order to reach the same value. On the net-HEP dataset, both Degree

and RW converge relatively quickly, with Degree converging somewhat faster.

A particularly interesting set of results concerns the high-sparsity regime, where each sparsifier is

allowed to select only 5-500 edges. For convenience, the right column of both plots magnifies this

27

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

58

60

62

64

66

68

70

72

74

In
flu

en
ce

sp
re

ad
RW
Degree
Centrality

(a) PMIA

0.000 0.025 0.050 0.075 0.100

Fraction of edges

58

60

62

64

66

68

70

72

74

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(b) PMIA (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

50

55

60

65

70

75

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(c) SP1M

0.000 0.025 0.050 0.075 0.100

Fraction of edges

50

55

60

65

70

75

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(d) SP1M (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

0

50

100

150

200

250

300

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(e) CELF

0.000 0.025 0.050 0.075 0.100

Fraction of edges

0

50

100

150

200

250

300

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(f) CELF (high sparsity)

Figure 4.1: Influence spread for the net-HEP dataset

range of the graph. On the email-Enron network, only 500 edges (out of over 118,000) are required

for the RW algorithm to reach the optimal value for both the PMIA and SP1M algorithms. On the

net-HEP dataset, the performance of RW dips slightly at intermediate values. However, the results

are already close to optimal at only 20 edges (out of over 31,000), and reach optimality by 500

edges. It is striking that the number of edges required for RW to produce optimal results is ap-

proximately the same for both datasets, one of which contains nearly 4 times the number of edges.

This property, which is not shared by the baseline algorithms, is extremely useful for sparsification

28

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

300

450

600

750

In
flu

en
ce

sp
re

ad
RW
Degree
Centrality

(a) PMIA

0.000 0.025 0.050

Fraction of edges

300

350

400

450

500

550

600

650

700

750

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(b) PMIA (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

300

450

600

750

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(c) SP1M

0.000 0.025 0.050

Fraction of edges

300

350

400

450

500

550

600

650

700

750

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(d) SP1M (high sparsity)

Figure 4.2: Influence spread for the email-Enron dataset

because it means that the number of edges which must be selected grows only slowly as a function

of the graph size. So, graphs which are orders of magnitude too large for a given influence maxi-

mization algorithm could potentially be analyzed using sparsification without a significant loss in

quality. This possibility is further explored later in the chapter.

Speedup

This section characterizes the tradeoff between the fraction of edges selected and the amount of

time required to run the influence maximization algorithm. While both PMIA and SP1M are

sufficiently scalable that the speedups are not necessary for the two sample datasets, these results

help show the utility of sparsification for addressing datasets that are currently out of reach for these

algorithms (unfortunately, analyzing such graphs is too memory-intensive for the computational

29

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Ti
m

e
(s

)

RW
Degree
Centrality

(a) PMIA

0.000 0.025 0.050

Fraction of edges

0.000

0.005

0.010

0.015

0.020

0.025

Ti
m

e
(s

)

RW
Degree
Centrality

(b) PMIA (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

0

1

2

3

4

5

6

7

8

9

Ti
m

e
(s

)

RW
Degree
Centrality

(c) SP1M

0.000 0.025 0.050

Fraction of edges

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

RW
Degree
Centrality

(d) SP1M (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

0

20

40

60

80

100

120

Ti
m

e
(m

in
)

RW
Degree
Centrality

(e) CELF

0.000 0.025 0.050 0.075 0.100

Fraction of edges

0

20

40

60

80

100

120

Ti
m

e
(m

in
)

RW
Degree
Centrality

(f) CELF (high sparsity)

Figure 4.3: Runtime for the net-HEP dataset

resources available at present). Figure 4.3 presents results for the net-HEP dataset and Figure 4.4

presents results for the email-Enron dataset.

In all but one case, the RW algorithm provides the slowest growth in runtime as edges are added.

It is important to note that the growth in the runtime for RW is always sublinear, though this is

sometimes not the case for Degree and Centrality. Since the results of the previous section suggest

that it will typically be sufficient to keep only a small fraction of edges, these results are magnified

30

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
(s

)

RW
Degree
Centrality

(a) PMIA

0.000 0.025 0.050

Fraction of edges

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
(s

)

RW
Degree
Centrality

(b) PMIA (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

0

50

100

150

200

250

300

350

Ti
m

e
(s

)

RW
Degree
Centrality

(c) SP1M

0.000 0.025 0.050

Fraction of edges

0

10

20

30

40

50

Ti
m

e
(s

)

RW
Degree
Centrality

(d) SP1M (high sparsity)

Figure 4.4: Runtime for the email-Enron dataset

in the right column of both figures. Here, it is apparent that optimal results can be delivered in only

a small fraction of the time required by the original algorithm. On the larger email-Enron dataset,

applying sparsification with 500 edges yields a speedup of anywhere from 13-35x, compared to

using the full network. This suggests that sparsification can achieve dramatic speedups without

sacrificing significant quality in the resulting influence spread.

Scaling to large networks

One of the most promising uses of sparsification is to apply influence maximization algorithms to

networks which would otherwise be too large for computational tractability. Two of the algorithms

considered here, CELF and InfluMax, are not scalable to large graphs. However, they can be used

on graphs which are an order of magnitude larger than was previously possible using sparsification.

31

0.00 0.01 0.02 0.03 0.04

Fraction of edges

5200

5300

5400

5500

5600

5700

5800

In
flu

en
ce

sp
re

ad

(a) Influence spread

0.00 0.01 0.02 0.03 0.04

Fraction of edges

0

1

2

3

4

5

Ti
m

e
(m

in
)

(b) Runtime

Figure 4.5: CELF applied to the email-Enron dataset

CELF has previously been applied to the net-HEP dataset [4]. However, larger networks have

either been dismissed as impractical [4], or else running CELF on them required amounts of time

that are usually infeasible (7 days in [13]). Here, CELF is applied to the email-Enron network in

a matter of minutes. Figure 4.5 shows the runtime and influence spread of CELF applied to this

dataset. The influence spread shown in Figure 4.5a increases only slightly as the algorithm runs,

suggesting that a near-optimal seed set has been found. As can be seen in 4.5b, the runtime is

uniformly less than five minutes.

InfluMax, while achieving influence spreads greater than that of PMIA or SP1M, has never been

applied to a large network. Indeed, Du et al. [7] showed that it required more than 24 hours to select

3 seed nodes on a synthetic network with 128 nodes and 320 edges. Here, InfluMax is applied to

net-HEP, which contains contains over 15,000 nodes and 31,000 edges, again with a budget of 3

nodes. Figure 4.6c shows the runtime of InfluMax on net-HEP. With sparsification, InfluMax can

be run on a 31,000-edge network in less than an hour. Unfortunately, the true influence cannot

be calculated because evaluating the influence spread of a seed set in the continuous time model

used by InfluMax is intractable for large networks. However, Figure 4.6a shows the influence

spread that is achieved on the sparsified network. This quantity increases as more edges are added.

However, an increase should be expected regardless of whether the true influence spread is different

32

0.000 0.002 0.004 0.006 0.008 0.010

Fraction of edges

0

5

10

15

In
flu

en
ce

sp
re

ad

(a) Influence spread

0.000 0.002 0.004 0.006 0.008 0.010

Fraction of edges

0

100

200

300

400

500

600

N
od

es

(b) Number of nodes

0.000 0.002 0.004 0.006 0.008 0.010

Fraction of edges

0

40

80

120

160

Ti
m

e
(m

in
)

(c) Runtime

Figure 4.6: InfluMax applied to the net-HEP dataset

since additional edges increase the number of nodes that are reachable. Figure 4.6b shows that the

number of nodes with non-zero degree after sparsification increases much faster than the influence

spread as more edges are added. While not conclusive, this is reason to think that sparsification

results in influence spreads that are close to the true value. Thus, the examples of both CELF

and InfluMax demonstrate that sparsification can help algorithms scale to datasets which were

previously out of reach.

33

CHAPTER 5: CONCLUSION

Dynamic processes are a crucial part of networked systems, and analysis of their properties under-

pins many tasks in network analysis. Because such processes pose hard computational problems,

it is necessary to develop scalable algorithms which provide good approximations to the optimal

solution. This thesis proposed a new sparsification algorithm specifically targeted at preserving the

properties of dynamic processes while using a dramatically smaller set of edges. A formulation

based on the stationary properties of random walks on the graph gives rise to an algorithm which

is both optimal and computationally efficient.

This algorithm was evaluated on two real-world network datasets taken from the arXiv and the

Enron emails. The experiments focused on the influence maximization task, as this provides an

example of a computationally hard problem dealing with dynamic behavior which has been the

subject of a great deal of recent work. The results show that the proposed sparsification method

allows near-optimal sets of seed nodes to be found at a small fraction of the computational cost.

Strikingly, the number of edges that must be retained for near-optimal results appears to grow only

very slowly with the size of the network. This property could prove extremely useful across a

variety of other influence maximization algorithms and perhaps other domains entirely.

Because only a small number of edges need be retained, two influence maximization algorithms

were applied to datasets which previous work had considered out of reach. In both cases (CELF and

InfluMax), sparsification allowed influence maximization to be performed on a network that was

at least an order of magnitude larger than was previously possible. These experiments demonstrate

that sparsification is a vital method for scaling algorithms to the extremely large datasets made

available by social media.

Future work can improve the formulation of the objective by incorporating additional information.

34

For example, nodes and edges in a network are typically endowed with attributes such as prefer-

ences or group identities. Because of tendencies such as homophily, such attributes will impact

the behavior of dynamic processes. Incorporating knowledge of attributes, when such informa-

tion is available, could greatly improve the accuracy of the resulting model. Additionally, this

work has focused on the stationary properties of a random walk for the sake of computational and

analytic tractability. However, real-world processes are often far from stationarity, and modeling

nonstationary behavior is another promising way of extending the algorithm

A final direction for future work is to test the sparsification algorithm on additional domains related

to dynamic processes. While influence maximization is a well-studied example of such problems,

examining additional tasks could help to better characterize the scope of problems that sparsifica-

tion is useful for.

35

LIST OF REFERENCES

[1] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership

stochastic blockmodels. In Advances in Neural Information Processing Systems, pages 33–

40, 2009.

[2] Andras Benczur and David R Karger. Randomized approximation schemes for cuts and flows

in capacitated graphs. arXiv preprint cs/0207078, 2002.

[3] Ning Chen. On the approximability of influence in social networks. SIAM Journal on Discrete

Mathematics, 23(3):1400–1415, 2009.

[4] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for prevalent viral

marketing in large-scale social networks. In Proceedings of the 16th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages 1029–1038. ACM,

2010.

[5] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social networks

under the linear threshold model. In Data Mining (ICDM), 2010 IEEE 10th International

Conference on, pages 88–97. IEEE, 2010.

[6] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure in

very large networks. Physical review E, 70(6):066111, 2004.

[7] Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. Scalable influence estima-

tion in continuous-time diffusion networks. In Advances in Neural Information Processing

Systems, pages 3147–3155, 2013.

[8] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

36

[9] Nicholas J Foti, James M Hughes, and Daniel N Rockmore. Nonparametric sparsification of

complex multiscale networks. PloS One, 6(2):e16431, 2011.

[10] Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Panigrahi. A gen-

eral framework for graph sparsification. In Proceedings of the forty-third annual ACM Sym-

posium on Theory of Computing, pages 71–80. ACM, 2011.

[11] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A complex systems

look at the underlying process of word-of-mouth. Marketing Letters, 12(3):211–223, 2001.

[12] Manuel Gomez-Rodriguez and Bernhard Schölkopf. Influence maximization in continuous

time diffusion networks. arXiv preprint arXiv:1205.1682, 2012.

[13] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Simpath: An efficient algorithm for influ-

ence maximization under the linear threshold model. In Data Mining (ICDM), 2011 IEEE

11th International Conference on, pages 211–220. IEEE, 2011.

[14] Mark Granovetter. Threshold models of collective behavior. American Journal of Sociology,

pages 1420–1443, 1978.

[15] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through

a social network. In Proceedings of the ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 137–146. ACM, 2003.

[16] Masahiro Kimura and Kazumi Saito. Tractable models for information diffusion in social

networks. In Knowledge Discovery in Databases: PKDD 2006, pages 259–271. Springer,

2006.

[17] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and

Natalie Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th

37

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

420–429. ACM, 2007.

[18] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, June 2014.

[19] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis, and Antti Ukko-

nen. Sparsification of influence networks. In Proceedings of the 17th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, pages 529–537. ACM,

2011.

[20] Elchanan Mossel and Sebastien Roch. On the submodularity of influence in social networks.

In Proceedings of the thirty-ninth annual ACM Symposium on Theory of Computing, pages

128–134. ACM, 2007.

[21] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in

networks. Physical review E, 69(2):026113, 2004.

[22] Filippo Radicchi, José J Ramasco, and Santo Fortunato. Information filtering in complex

weighted networks. Physical Review E, 83(4):046101, 2011.

[23] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for scal-

able clustering. In Proceedings of the 2011 ACM SIGMOD International Conference on

Management of Data, pages 721–732. ACM, 2011.

[24] M Ángeles Serrano, Marián Boguñá, and Alessandro Vespignani. Extracting the multiscale

backbone of complex weighted networks. Proceedings of the National Academy of Sciences,

106(16):6483–6488, 2009.

[25] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on

Computing, 40(4):981–1025, 2011.

38

	Sparsification of Social Networks Using Random Walks
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: PREVIOUS WORK
	Sparsification
	Application-based sparsifiers
	Spectral and cut sparsifiers
	Backbone detection

	Influence maximization
	Problem overview
	Submodularity and the greedy algorithm
	Heuristic approaches

	CHAPTER 3: METHODOLOGY
	Objective formulation
	Problem statement
	Proposed algorithm
	Runtime analysis
	Lazy Evaluation and Submodularity

	CHAPTER 4: RESULTS
	Theoretical analysis
	Experimental design
	Datasets
	Influence maximization algorithms
	Sparsification algorithms

	Experimental results
	Influence spread
	Speedup
	Scaling to large networks

	CHAPTER 5: CONCLUSION
	LIST OF REFERENCES

