11,286 research outputs found

    Towards Scalable Network Delay Minimization

    Full text link
    Reduction of end-to-end network delays is an optimization task with applications in multiple domains. Low delays enable improved information flow in social networks, quick spread of ideas in collaboration networks, low travel times for vehicles on road networks and increased rate of packets in the case of communication networks. Delay reduction can be achieved by both improving the propagation capabilities of individual nodes and adding additional edges in the network. One of the main challenges in such design problems is that the effects of local changes are not independent, and as a consequence, there is a combinatorial search-space of possible improvements. Thus, minimizing the cumulative propagation delay requires novel scalable and data-driven approaches. In this paper, we consider the problem of network delay minimization via node upgrades. Although the problem is NP-hard, we show that probabilistic approximation for a restricted version can be obtained. We design scalable and high-quality techniques for the general setting based on sampling and targeted to different models of delay distribution. Our methods scale almost linearly with the graph size and consistently outperform competitors in quality

    Scalable algorithms for QoS-aware virtual network mapping for cloud services

    Get PDF
    Both business and consumer applications increasingly depend on cloud solutions. Yet, many are still reluctant to move to cloud-based solutions, mainly due to concerns of service quality and reliability. Since cloud platforms depend both on IT resources (located in data centers, DCs) and network infrastructure connecting to it, both QoS and resilience should be offered with end-to-end guarantees up to and including the server resources. The latter currently is largely impeded by the fact that the network and cloud DC domains are typically operated by disjoint entities. Network virtualization, together with combined control of network and IT resources can solve that problem. Here, we formally state the combined network and IT provisioning problem for a set of virtual networks, incorporating resilience as well as QoS in physical and virtual layers. We provide a scalable column generation model, to address real world network sizes. We analyze the latter in extensive case studies, to answer the question at which layer to provision QoS and resilience in virtual networks for cloud services

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    A Survey of Network Optimization Techniques for Traffic Engineering

    Get PDF
    TCP/IP represents the reference standard for the implementation of interoperable communication networks. Nevertheless, the layering principle at the basis of interoperability severely limits the performance of data communication networks, thus requiring proper configuration and management in order to provide effective management of traffic flows. This paper presents a brief survey related to network optimization using Traffic Engineering algorithms, aiming at providing additional insight to the different alternatives available in the scientific literature

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Resilience options for provisioning anycast cloud services with virtual optical networks

    Get PDF
    Optical networks are crucial to support increasingly demanding cloud services. Delivering the requested quality of services (in particular latency) is key to successfully provisioning end-to-end services in clouds. Therefore, as for traditional optical network services, it is of utter importance to guarantee that clouds are resilient to any failure of either network infrastructure (links and/or nodes) or data centers. A crucial concept in establishing cloud services is that of network virtualization: the physical infrastructure is logically partitioned in separate virtual networks. To guarantee end-to-end resilience for cloud services in such a set-up, we need to simultaneously route the services and map the virtual network, in such a way that an alternate routing in case of physical resource failures is always available. Note that combined control of the network and data center resources is exploited, and the anycast routing concept applies: we can choose the data center to provide server resources requested by the customer to optimize resource usage and/or resiliency. This paper investigates the design of scalable optimization models to perform the virtual network mapping resiliently. We compare various resilience options, and analyze their compromise between bandwidth requirements and resiliency quality
    • …
    corecore