3 research outputs found

    Hybrid CoAP-based resource discovery for the Internet of Things

    Get PDF
    Enabling automatic, efficient and scalable discovery of the resources provided by constrained low-power sensor and actuator networks is an important element to empower the transformation towards the Internet of Things (IoT). To this end, many centralized and distributed resource discovery approaches have been investigated. Clearly, each approach has its own motivations, advantages and drawbacks. In this article, we present a hybrid centralized/distributed resource discovery solution aiming to get the most out of both approaches. The proposed architecture employs the well-known Constrained Application Protocol (CoAP) and features a number of interesting discovery characteristics including scalability, time and cost efficiency, and adaptability. Using such a solution, network nodes can automatically and rapidly detect the presence of Resource Directories (RDs), via a proactive RD discovery mechanism, and perform discovery tasks through them. Nodes may, alternatively, fall back automatically to efficient fully-distributed discovery operations achieved through Trickle-enabled, CoAP-based technics. The effectiveness of the proposed architecture has been demonstrated by formal analysis and experimental evaluations on dedicated IoT platforms

    Pervasive service discovery in low-power and lossy networks

    Get PDF
    Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is expected to play a major role in realising the Internet of Things (IoT) vision. Such a vision aims to expand the current Internet to interconnect billions of miniature smart objects that sense and act on our surroundings in a way that will revolutionise the future. The pervasiveness and heterogeneity of such low-power devices requires robust, automatic, interoperable and scalable deployment and operability solutions. At the same time, the limitations of such constrained devices impose strict challenges regarding complexity, energy consumption, time-efficiency and mobility. This research contributes new lightweight solutions to facilitate automatic deployment and operability of LLNs. It mainly tackles the aforementioned challenges through the proposition of novel component-based, automatic and efficient SD solutions that ensure extensibility and adaptability to various LLN environments. Building upon such architecture, a first fully-distributed, hybrid pushpull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is proposed based on the well-known Trickle algorithm. Motivated by EADPs’ achievements, new methods to optimise Trickle are introduced. Such methods allow Trickle to encompass a wide range of algorithms and extend its usage to new application domains. One of the new applications is concretized in the TrickleSD protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast communication in LLNs are proposed. Finally, interoperable standards-based SD in the IoT is demonstrated, and methods combining zero-configuration operations with infrastructure-based solutions are proposed. Experimental evaluations of the above contributions reveal that it is possible to achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD in LLNs. These achievements open novel perspectives for zero-configuration capabilities in the IoT and promise to bring the ‘things’ to all people everywhere

    Towards Scalable DNS-Based Service Discovery for the Internet of Things

    No full text
    corecore