4 research outputs found

    Enabling Fast and Universal Audio Adversarial Attack Using Generative Model

    Full text link
    Recently, the vulnerability of DNN-based audio systems to adversarial attacks has obtained the increasing attention. However, the existing audio adversarial attacks allow the adversary to possess the entire user's audio input as well as granting sufficient time budget to generate the adversarial perturbations. These idealized assumptions, however, makes the existing audio adversarial attacks mostly impossible to be launched in a timely fashion in practice (e.g., playing unnoticeable adversarial perturbations along with user's streaming input). To overcome these limitations, in this paper we propose fast audio adversarial perturbation generator (FAPG), which uses generative model to generate adversarial perturbations for the audio input in a single forward pass, thereby drastically improving the perturbation generation speed. Built on the top of FAPG, we further propose universal audio adversarial perturbation generator (UAPG), a scheme crafting universal adversarial perturbation that can be imposed on arbitrary benign audio input to cause misclassification. Extensive experiments show that our proposed FAPG can achieve up to 167X speedup over the state-of-the-art audio adversarial attack methods. Also our proposed UAPG can generate universal adversarial perturbation that achieves much better attack performance than the state-of-the-art solutions.Comment: Publish on AAAI2

    Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing

    Full text link
    Deep neural networks (DNN) have been shown to be useful in a wide range of applications. However, they are also known to be vulnerable to adversarial samples. By transforming a normal sample with some carefully crafted human imperceptible perturbations, even highly accurate DNN make wrong decisions. Multiple defense mechanisms have been proposed which aim to hinder the generation of such adversarial samples. However, a recent work show that most of them are ineffective. In this work, we propose an alternative approach to detect adversarial samples at runtime. Our main observation is that adversarial samples are much more sensitive than normal samples if we impose random mutations on the DNN. We thus first propose a measure of `sensitivity' and show empirically that normal samples and adversarial samples have distinguishable sensitivity. We then integrate statistical hypothesis testing and model mutation testing to check whether an input sample is likely to be normal or adversarial at runtime by measuring its sensitivity. We evaluated our approach on the MNIST and CIFAR10 datasets. The results show that our approach detects adversarial samples generated by state-of-the-art attacking methods efficiently and accurately.Comment: Accepted by ICSE 201
    corecore